EPlus3D

Researchers Use Carbon 3D Printing Technology to Improve Wine Testing

Electronics
Metal AM Markets
AMR Military

Share this Article

Winemaking is a complicated process that involves a lot more than just smashing up some grapes and letting them sit to ferment. It’s a process that requires a lot of knowledge, and a lot of equipment. Like almost everything else, winemaking has been changed by technology, and winemakers and researchers have taken advantage of more advanced testing equipment as well as processes like automation and robotics to better study winemaking and yeast fermentation.

When researching small-batch fermentation, the conditions of volume production are typically reproduced by using water-filled airlocks integrated with testing flasks. The airlocks keep oxygen away from the yeast while allowing carbon dioxide to escape during fermentation, simulating the kinetics of a large tank. Two researchers at the University of Adelaide, Professor Vladimir Jiranek and Dr. Tommaso Watson, decided to try automating their wine research by integrating robotic sampling into the process. This would involve redesigning the water-filled airlocks.

In the new automated process, a robotic arm would take samples from testing flasks, reducing the number of manual steps in the testing process as well as the possibility for human error. The airlocks, the design of which hadn’t been changed in years, would need to be redesigned in order to fit a large number of flasks on a static test platform. The researchers’ goal was to be able to fit 96 flasks on a single test platform. In collaboration with contract manufacturer The Technology House (TTH), they began working on ways to reduce the size of the flasks and airlocks.

First, they tried creating a new airlock from multiple stainless steel parts, put together with silver soldering. The design was a good, compact one, with strong construction and the ability to be sterilized by autoclave at 121ºC, but it had several disadvantages. The heavy stainless steel had the potential to damage the glass flasks, and it also didn’t allow visibility of water levels inside. The acidic environment produced during the fermentation process put the silver soldering at risk for corrosion, too. Moreover, this method was expensive and difficult, as it required multiple parts.

Those drawbacks led the researchers to try another method: 3D printing. They used an FDM 3D printer to manufacture the airlocks using ABS and PLA materials, hoping for a more lightweight design that wouldn’t damage the flasks and would offer better internal visibility. 3D printing achieved those goals, and also enabled the researchers to create a more compact and refined design with complex internal airflow chambers. This method wasn’t perfect either, though: ABS and PLA are temperature-sensitive materials that could not be sterilized via autoclave like the stainless steel could. In addition, imperfect adhesion between layers allowed for leaks.

The team didn’t want to give up on 3D printing altogether, though, so they turned to Carbon’s Digital Light Synthesis (DLS) technology. The Technology House was one of the initial partners selected to begin using Carbon’s technology in its early days, so they were well familiar with Carbon’s M1 and M2 3D printers and suggested DLS for the third prototype. Using Carbon’s Cyanate Ester resin, the team 3D printed a third version of the airlock, and found that it combined the advantages of the previous two iterations, as well as eliminating the disadvantages.

 

The Cyanate Ester resin delivered a final part with a much better finish than the FDM part, and it was easily designed and 3D printed in a single piece. As the resin is designed for engineering-level applications, it could be sterilized via autoclave at 121°C without any damage, and the part was watertight and airtight. From design to production, the airlock took less than one week to create, a reduction in production time of over 67%. Costs were also reduced by 60%.

The compact airlock also allowed for a much smaller flask design, which worked out even better than the researchers had initially hoped: instead of the projected 96, they were able to fit 384 flasks on a platform for easy, quick robotic sampling. The University of Adelaide and The Technology House plan to continue to work together to produce and use thousands of the 3D printed airlocks over the next few years, allowing for automated, error-free wine testing – which should ultimately result in better wine. Discuss in the Wine Testing forum at 3DPB.com.

[Source/Images: Carbon]

 

Share this Article


Recent News

CORE Offers to Buy 3D Printing Service Fathom Amid Economic Downturn

$1M to Drive Metal 3D Printing Adoption in ASTRO America Project with GE, Pratt & Whitney, and Honeywell



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Biden Admin Announces Flurry of Reshoring Actions, Including Council on Supply Chain Resilience

Yesterday, I posted about the over $6 billion in new funding for US advanced manufacturing related to batteries and semiconductor packaging announced by the Biden administration to be awarded in...

Featured

Biden Admin Announces Over $6 Billion in Funding for Battery and Chip Advanced Manufacturing in November

In a development that has become routine for the Biden administration, the White House announced a total of more than $6 billion in new funding opportunities for advanced manufacturing applications...

America Makes and NCDMM Funding Now Tops $729M for American 3D Printing and Beyond

In a significant move to advance the U.S. manufacturing sector, the National Center for Defense Manufacturing and Machining (NCDMM) and America Makes have recently announced substantial ceiling increases on their...

US Army Reserve Test 3D Printed Explosives

In October 2023, US Army Reserve Soldiers assigned to the 102nd Training Division (Maneuver Support) attended a two-week Combat Engineer Reclassification Course at Fort Leonard Wood in Missouri, where they...