Made In Space Announces That Final 3D Printed Test Shield for Radiation Experiments Aboard the BEAM Is Complete

Astronauts aboard the space station 3D printed a shield to cover one of the two Radiation Environment Monitors inside the BEAM. The shield, the white hemispherical shape at the center of the photograph, is shown above inside the BEAM module. [Image: NASA]
Over the last several months, the crew 3D printed two successively thicker radiation shields, measuring at 3.3 mm and 10 mm, to replace the 1.1 mm thick one protecting the REM sensor. Researchers could then study the difference in measurements between the sensor with a shield and the one without, to “resolve the energy spectra of the trapped radiation particles.”
We’ve just learned from Made In Space that the third of these three radiation testing device prints has been completed, using its Additive Manufacturing Facility.
“Our guiding mission at Made In Space is to help develop the tools and technologies needed to explore off Earth. Devices such as this radiation shield will make future missions safer for astronauts. Each additively manufactured part we make is advancing this critical technology. We’ve only scratched the surface of what we will one day make in space,” Matt Napoli, Vice President of In-Space Operations for Made In Space, told 3DPrint.com.
The ISS astronauts changed out the 3D printed shields every few weeks, beginning in April and ending in late June. Each white, dome-shaped shield was 3D printed on the Additive Manufacturing Facility from ABS plastic, and inside each one is a channel for holding the REM sensor, which is responsible for detecting and gathering radiation measurements.
“These relatively inexpensive and small tests will provide our customers with some valuable information on how to better design spacecraft to operate safely and more efficiently. Another benefit to these tests is the fast, real-time access to data – NASA will know in a short timeframe how radiation is affecting these structures and at what level,” said Napoli.
Spacecraft pass through areas, like the South Atlantic Anomaly, with higher radiation levels while they orbit the Earth, and manufacturers will be better equipped to improve upon the protection capabilities of future spacecraft if they know more about the effects of radiation. The REM devices measure radiation from all angles, and Made In Space engineers modified the design of the sensor to improve upon the the USB port’s mounting groove area.
Andrew Rush, the President and CEO of Made In Space, explained, “We have a number of product development interests related to this project. The REM tests could lead to many improvements in spacecraft and habitat construction in the future. Right now, with our Archinaut development program, we’re working to manufacture and assemble large structures in space for the first time in history. Information from these tests will help us with our materials research and other capabilities development.”
The inflatable BEAM is in the middle of its two-year stint attached to the ISS, and all of the technology demonstrations and research that the astronauts are conducting in the module give NASA valuable data about expandable space habitat technology in low-Earth orbit. Discuss in the BEAM forum at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
You May Also Like
New Business: Temporary, Migratory, & Modular 3D Printed Architecture
If we look at potentially emerging 3D printing businesses, then architecture has not been fully explored. Yes, there is a lot of house 3D printing going on worldwide. From deployable...
3D Printing News Briefs, April 19, 2025: Material Extrusion Standard, Metal Powder, & More
In today’s 3D Printing News Briefs, we’re covering a proposed standard for material extrusion, before moving on to business and metal powder. We’ll end with a commercial store’s robotic 3D...
Japan Unveils World’s First 3D Printed Train Station
Japan is now home to what we believe is the world’s first train station built with 3D printing technology. Located in Arida City, just south of Osaka, the new Hatsushima...
restor3d Raises $38M to Expand 3D Printed Orthopedic Implants
Backed by $38 million in new funding, restor3d is pushing ahead with the launch of four personalized implant lines, set to roll out in 2025 and 2026. This latest venture...