
3D printing seen in time lapse in colorFabb’s 2015 contest
I’ve always found videos depicting time lapse designs to be really impressive, and time lapse footage can be really helpful if you’re trying to quickly show the entire span of a lengthy project. But in terms of giving you a realistic idea of how long a 3D printing process actually takes, time lapse videos are not that great. Depending on how big a project is, the additive manufacturing process can take hours, or even days, especially when it involves lasers melting metal powder into complex parts.
Waseem Faidi, who leads the additive research team for machine technology at GE Global Research, is currently working with Aerodynamics (Aero) and Computational Fluid Dynamics (CFD) teams at GE’s labs in Niskayuna, New York and Munich, Germany to develop ways to speed up the process and unlock more of the technology’s potential.
GE Global Research has worked on many innovative 3D printing projects and initiatives over the years, like working to set new standards for 3D printing files, creating a mini turbine that can power 10,000 homes, and exploring the use of PEEK material to make aerospace parts with the Roboze One+400 3D printer.
As the company’s website says, “At Global Research, we work every day to see, move and create the future. This is all about positioning GE for the long-term, making the world a better place and partnering with our business teams serving our customers. In partnership with the GE businesses, we deliver outcomes by mapping science to customer value, accelerating differentiated, cost-effective technology into our products and exploring the edge of technical feasibility. These advancements will lead GE, our customers and industries into the future.”

GE scientists are using supercomputers to design the most optimal parts for jet engines. The company is now tapping this expertise to build advanced 3D printers. [Image: GE Global Research]
Currently, the simplest way to speed up laser 3D printing processes is to use lasers with higher power. But simple is really more of a relative term – the chamber in a 3D printer where metal is melted contains an extremely hot atmosphere, and it’s infused with gas, like nitrogen and argon, that gets rid of any external influences. The operator can’t just crank up the intensity of the laser with a switch.
“If it were just a matter of integrating higher-power lasers, that would be easy. But there’s a lot going on inside the chamber with different gas flows during the printing process that prevents you from doing that. The quality of the part being printed can be impacted,” Faidi explained.
This is why Faidi has turned to GE’s Aero and CFD teams for help. His research is an important part of the efforts across all of GE to uncover new 3D printing applications, like when the company acquired major stakes in Arcam AB and Concept Laser; GE instantly became one of the top metal 3D printer manufacturers after closing these deals. The company’s 3D printing-focused business, GE Additive, will be introducing its own large-scale metal 3D printer later this year as well.
“The question with 3D metal printers is how can I control gas flows in such a way that allows us to scale up the power of the lasers in the machine beyond what is possible today? If we can figure that out, we can significantly improve the printing speed and quality of our machines today,” Faidi said.
“We have a world-class team in laser technology with decades of experience bringing new laser applications in cutting and welding to manufacturing.”

Laser pioneer Marshall Jones is helping GE increase laser power inside additive manufacturing machines. [Image: GE Additive]
Faidi said, “Suffice to say we have a lot of brain power behind figuring out how to get more laser power.”
Jones pioneered the use of lasers for processing industrial materials by developing fiber optic systems, and inventing novel methods to weld dissimilar metals. His work also resulted in lasers that were powerful enough to cut right through metal.
GE isn’t the only game in town working to improve laser 3D printing processes: the University of Sheffield is conducting research into making laser melting processes faster and more energy-efficient. The way we see it, the more people who are working to solve the unique problems that crop up due to 3D printing technology, the more people will benefit in the long run. Discuss in the GE Global Research forum at 3DPB.com.
[Source: GE Reports]
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
MX – Machining Transformation: Revolutionizing Manufacturing with Additive Technologies
The machining industry is experiencing a profound transformation, propelled by four key trends: Process Integration, Automation, Digital Transformation (DX), and Green Transformation (GX). Central to this evolution are Additive Manufacturing...
The Role of Multiplatform Solutions in Advancing Industrial Large Format 3D Printing
The past tumultuous year in the additive manufacturing industry have led to highs and lows for several companies. The magic recipe that continues to appear to lead to continuous growth...
3D Printing News Briefs, January 25, 2025: ESG & Sustainability, Layoffs, Furniture, & More
We’re starting off with some event news in today’s 3D Printing News Briefs, as AMUG has announced the keynote speakers for its 2025 conference, and Dyndrite starts its World Tour...
Investing in Tooling Innovation is Key to Reshoring Success
Outsourcing and retirement have dramatically shrunk the manufacturing workforce in the U.S., creating a challenge to efforts at reshoring production production. Pictured here is a toolmaker assembling an injection mold,...