GE Global Research Uses 3D Printing to Create Mini Turbine That Can Power 10,000 Homes

Share this Article

hofer turbine

[Image: GE Global Research]

‘Bigger isn’t always better’ is a maxim the truth of which is increasingly convincing to people in the modern world. We’ve seen computers go from the size of a room to the size of a fingernail, telephones move from bulky, murder-weapon-size devices to sliding into your front pocket, and even houses are trending toward the not-so-big.

Latest on the my-invention-is-smaller-than-yours catwalk is a compact turbine that despite weighing only 150 pounds can generate sufficient electricity to power 10,000 homes. To give you an idea of what that means in terms of reduction in size, current steam turbines with similar output capabilities are ten times larger. Not only is the newer turbine significantly smaller, it also operates with a 10% increase in efficiency at turning heat into electricity. A further benefit is the system’s ability to quickly power up to quickly generate electricity during peak demand, needing only a couple of minutes to come online in comparison to the half an hour necessary for steam-powered turbines.

This diminutive dynamo, developed at GE Global Research, works using the power of carbon dioxide that is heated to such a high temperature, in this case up to 700°C, it becomes what is known as a supercritical fluid. Rather than using steam to give it spin, this supercritical fluid operates in the realm where the difference between gas and liquid virtually disappears allowing it to generate power in an extremely efficient manner. After passing through the turbine, the supercritical material is cooled, repressurized, and sent through again in a endless repeated cycle that keeps the turbine moving.

GRC-Miniturbine-05-1024x683

Doug Hofer of GE Global Research holds a 3D printed prototype of the turbine [Image: GE Global Research]

In addition to producing large quantities of electricity from a small device, this method would also give companies an opportunity to turn CO2 into cleaner power. It is this promise, and other potential still being realized, that has led to the partnership between GE and the Advanced Research Projects Agency-Energy (ARPA-E), an agency of the US government as well as other programs within the US Department of Energy.

brightonbeach_webThe research is, as of yet, in its early stages, but 3D printing has been a vital tool for study and iteration in the development process. While the final ‘minirotor’ would be high-strength metal, it would have been nearly impossible to advance as quickly without the capabilities of 3D printing to provide rapid prototyping and process oriented models.

The next step in the development of this technology is to determine the possibilities for scaling it up to the 500 megawatt range, the capacity necessary to power a large city. In addition to the cleaner use of CO2 to produce power, the reduction in the footprint of these generators adds up to thousands of acres of landscape that need not be dedicated to simply holding generators. As Doug Hofer, developer of the minirotor explained:

“This compact machine will allow us to do amazing things. The world is seeking cleaner and more efficient ways to generate power. The concepts we are exploring with this machine are helping us address both. With energy demand expected to rise by 50 percent over the next two decades, we can’t afford to wait for new, cleaner energy solutions to power the planet. We have to innovate now and make energy generation as efficient as possible. Programs like those we are working on with the US Department of Energy are helping us get there.”

What do you think of this new technology? Discuss in the GE 3D Printed Turbine forum over at 3DPB.com.

GE_Global_Research_Logo

Share this Article


Recent News

Engineer Spent Over 900 Hours Designing and 3D Printing Miniature Roller Coaster

Trump the Mundane Performance in Smart Printing — Creality CR-10 Smart Vanquishes with Advanced Functions



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

3D Printing vs. CNC Machining

What’s the Best Way to Make Your Part? CNC machining is a common subtractive manufacturing technology. Unlike 3D printing, the process typically begins with a solid block of material (blank)...

PrintDry’s Vacuum Sealed Filament Container is the Smartest Yet

Quality 3D printing often relies on the quality of your filament. If left out in a room, moisture can seep into the material and cause issues with the printing process...

3D Printing News Briefs, July 11, 2021: Wohler’s Associates; Solvay, Ultimaker, and L’Oréal; America Makes & ODSA; BMW Group; Dartmouth College; BEAMIT & Elementum 3D; Covestro & Nexeo Plastics; Denizen

In today’s 3D Printing News Briefs, we’ll be telling you about the launch of an audio series and a competition, AM training and research efforts, materials, and more. Read on...

Sponsored

Tiertime Announces Large Format UP600 3D Printer

Tiertime has officially launched a large format addition to its UP line. At 500 x 400 x 600 mm (19.7 x 15.7 x 23.6 inches), the UP600’s build volume is...


Shop

View our broad assortment of in house and third party products.