Latest on the my-invention-is-smaller-than-yours catwalk is a compact turbine that despite weighing only 150 pounds can generate sufficient electricity to power 10,000 homes. To give you an idea of what that means in terms of reduction in size, current steam turbines with similar output capabilities are ten times larger. Not only is the newer turbine significantly smaller, it also operates with a 10% increase in efficiency at turning heat into electricity. A further benefit is the system’s ability to quickly power up to quickly generate electricity during peak demand, needing only a couple of minutes to come online in comparison to the half an hour necessary for steam-powered turbines.
This diminutive dynamo, developed at GE Global Research, works using the power of carbon dioxide that is heated to such a high temperature, in this case up to 700°C, it becomes what is known as a supercritical fluid. Rather than using steam to give it spin, this supercritical fluid operates in the realm where the difference between gas and liquid virtually disappears allowing it to generate power in an extremely efficient manner. After passing through the turbine, the supercritical material is cooled, repressurized, and sent through again in a endless repeated cycle that keeps the turbine moving.
In addition to producing large quantities of electricity from a small device, this method would also give companies an opportunity to turn CO2 into cleaner power. It is this promise, and other potential still being realized, that has led to the partnership between GE and the Advanced Research Projects Agency-Energy (ARPA-E), an agency of the US government as well as other programs within the US Department of Energy.The research is, as of yet, in its early stages, but 3D printing has been a vital tool for study and iteration in the development process. While the final ‘minirotor’ would be high-strength metal, it would have been nearly impossible to advance as quickly without the capabilities of 3D printing to provide rapid prototyping and process oriented models.
The next step in the development of this technology is to determine the possibilities for scaling it up to the 500 megawatt range, the capacity necessary to power a large city. In addition to the cleaner use of CO2 to produce power, the reduction in the footprint of these generators adds up to thousands of acres of landscape that need not be dedicated to simply holding generators. As Doug Hofer, developer of the minirotor explained:
“This compact machine will allow us to do amazing things. The world is seeking cleaner and more efficient ways to generate power. The concepts we are exploring with this machine are helping us address both. With energy demand expected to rise by 50 percent over the next two decades, we can’t afford to wait for new, cleaner energy solutions to power the planet. We have to innovate now and make energy generation as efficient as possible. Programs like those we are working on with the US Department of Energy are helping us get there.”
What do you think of this new technology? Discuss in the GE 3D Printed Turbine forum over at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
New AM Projects Get $2.1M Push from America Makes
America Makes has awarded $2.1 million to six new projects to tackle some of the biggest challenges in additive manufacturing (AM). The funding, provided by the U.S. Department of Defense...
3D Printing Predictions for 2025: Metal 3D Printing
Metal 3D printing has grown significantly over the past few decades. With applications ranging from orthopedic implants to rocket propulsion, it has become a cornerstone technology in several critical industries....
3D Printing News Briefs, December 21, 2024: Safety, Racing, Wind Turbines, & More
We’re talking about safety certification first in today’s 3D Printing News Briefs, and then moving on to applications in racing and wind turbines. We’ll finish with a story about 3D...
Solukon’s New Two-Ton Cleaner Lands First Customer in AMCM
A new system is pushing the boundaries of what’s possible in depowdering for metal 3D printing, tackling components that weigh over two tons and have intricate designs. Unveiled at Formnext...