Deakin University’s Institute for Frontier Materials First to Successfully 3D Print BNNT Titanium Composite

Share this Article

deakin-university-logoCarbon nanotubes were created in the 1990s, and thanks to their strength and ability to conduct electricity, have a multimillion dollar market. About a year ago, the National Research Council Canada started to expand its production of nanotubes made from lightweight boron nitride, also known as BNNTs, and it was projected that BNNTs would be used as an additive manufacturing material just as much as carbon nanotubes within the decade. That day may be arriving sooner than expected, as researchers at the Institute for Frontier Materials (IFM) at Australia’s Deakin University are reporting that they are the first ever to successfully 3D print a BNNT/titanium composite.

ifm-logoThe BNNT 3D printing breakthrough comes from an IFM collaboration between the additive manufacturing team, led by Dr. Daniel Fabijanic and Alfred Deakin Professor Ying (Ian) Chen’s Nanotechnology team.

Professor Chen explained, “Boron Nitride Nanotubes (BNNTs) are an advanced new nanomaterial with many unique properties. They are ultralight, super strong and incredibly resistant to heat. However, in the 20 years since the material’s discovery, it has only been possible to produce in small amounts. This has seriously limited its practical use in product development. Our novel and scalable manufacturing process can effectively eliminate this production bottleneck and unleash the real power of BNNTs into the marketplace.”

Being able to 3D print large quantities of BNNTs, which have some very unique qualities, could significantly impact multiple industries, from aerospace, defense, and energy to automotive and health. The structure, thermal conductivity, and mechanical properties are all similar to that of its carbon nanotube cousins, but withstand high temperatures up to 800°C, which is double what carbon nanotubes can handle. This quality is what makes BNNTs so attractive as a 3D printing material: this high heat tolerance means that BNNTs can survive the extreme temperatures that are involved when melting and liquefying powders during metal matrix composite 3D printing.

nanotubes.jpg.size.xxlarge.promoBNNTs can be dyed different colors, and also designed into transparent materials, neither of which carbon nanotubes are capable of. They can also generate electrical current under mechanical stress, have greater electrical insulation and chemical stability properties, and can shield against ultraviolet and neutron radiation.

Professor Ying (Ian) Chen Alfred Deakin Professor And Chair In Nanotechnology Instit for Frontier Materials Instit for Frontier Materials

Professor Ying (Ian) Chen, Alfred Deakin Professor & Chair In Nanotechnology, Institute for Frontier Materials

Professor Chen said, “When integrated into composite materials and systems, BNNTs enable entirely new classes of material performance across many industrial applications.”

Some possible applications and uses include:

  • energy storage: batteries, hydrogen storage devices, supercapacitors
  • defense and automotive sectors: ceramic, metallic, and polymer composites and transparent materials
  • semiconductor industry: thermally conductive and electrically insulating material
  • construction sector: fire retardant construction materials
  • aerospace and energy sectors: sensors and structural or multifunctional applications
  • medical sector: cancer and cellular regeneration therapies

Only in recent years have the potential commercial benefits of BNNTs really started to attract attention. Professor Chen said that there are only three global organizations that claim the ability to produce them, at scale, in large volume. But normal BNNT production is expensive, and energy intensive, which will not be a sustainable long-term method for large-scale industrial manufacturing.

“In contrast, the Deakin BNNT technology promises to offer the highest production rate as well as being more energy efficient and industry friendly, as it is based on current industry equipment. It has been demonstrated at laboratory scale at Deakin and has been running as needed to produce enough BNNTs for both internal and external research purposes, including several different products such as BN nanotube films, coatings and buckypapers, which are not available elsewhere,” Professor Chen said. “BN buckypapers could be used in aircraft as a radiation shielding layer, as filters for removing contaminants from water, and to make lightweight and stronger vehicles and aircraft.”

bnnt-composite-cubeFor those who may not be aware (because I wasn’t), buckypaper is a thin sheet made from carbon nanotubes.

Deakin University’s BNNT production technology, which researchers recently patented, is ready to be scaled up to meet demand. The university has plans to construct a commercial pilot plant in order to produce BNNTs in kilogram quantities. The plant will be built at Deakin’s Geelong Waurn Ponds campus. The IFM’s groundbreaking nanotechnology research was included in Deakin University’s display at last week’s Australian International Airshow and Aerospace and Defence Exposition. Discuss in the BNNT forum at 3DPB.com.

[Source/Images: Deakin University]

 

Share this Article


Recent News

Rocket 3D Printing Gets IPO Boost via Rocket Lab SPAC Merger

New 3D Printing Industry Leaders Join AMGTA



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Virtual Event Roundup: February 21, 2021

This coming week is chock full of webinars, with three a day for three days running. So without further ado, let’s dive right in! TriMech on Sweeps and Threads in...

Sponsored

The Future of Bound Metal 3D Printing for ExOne

Bound metal 3D printing is becoming one of the most productive metal additive manufacturing (AM) technologies for creating high-performance parts on-site. One of the few firms pioneering this emerging technology...

Featured

AMS 2021: The Gaps in Automating 3D Printing for Production

As exciting as all of the verticals discussed at the online Additive Manufacturing Strategies summit were, automation is a personal favorite as it addresses the gaps between 3D printing and...

Featured

ExOne (XONE) Releases Office-Friendly Bound Metal 3D Printer

The competition in Binder Jet is heating up. Just a week ago, Desktop Metal (NYSE: DM) announced the two-step bound metal Studio 2 System. By eliminating one step of the...


Shop

View our broad assortment of in house and third party products.