Velo3D

UNM Researchers Developing Bone-Ligament Adherence Systems, Using Student-Built 3D Bioprinter

Inkbit

Share this Article

unm-logoA couple of years ago, 3D printing entered the curriculum at the University of New Mexico’s (UNM) Valencia campus, and researchers at the main campus in Albuquerque are now attempting to use 3D bioprinting techniques to improve the overall outcomes in hand and wrist surgeries. Researchers with the UNM Department of Orthopaedics & Rehabilitation’s Research Division are hoping that through a combination of these techniques and electrospinning, they will be able to fabricate hybrid bone-ligament tissue, which could potentially be used in joint replacement surgeries.

The Research Division was recently awarded a grant from the American Foundation for Surgery of the Hand, which will be used to develop bone-ligament adherence systems, using patient-specific anatomy and a 3D printer. A UNM Women in STEM Award will also support the research project. But of course, this research would be a lot more difficult without UNM’s own 3D bioprinter, built by students.

Dr. Christina Salas, PhD, Director of UNM’s Orthopaedics Biomechanics & Biomaterials Laboratory, said, “The nice thing about building this ourselves is that we can print just about anything we want with this.”

“What makes our 3D printer different from standard printers which print just melted plastic, basically which is what most people are familiar with, our printer actually prints biological materials. Both synthetic and natural materials.”

unm-3d-bioprinterThe ultimate goal is to eventually be able to use stem cells to 3D print bone and ligament tissue, but right now the students are just testing the 3D printer using liquid solutions that can turn into something pliable. You can learn more about that 3D bioprinter in a video from KOB 4. The machine shop inside the 672-square-foot laboratory is home to some other 3D technology as well, including an Ultimaker 2 Extended + and a NextEngine 3D Scanner Ultra HD.

“Ligament repair or replacement has been plagued by problems joining soft tissue with adjacent bones. Our proposed methodology would let surgeons import patient-specific bone and ligament anatomy directly into a 3D printer to better join engineered and native bone during joint repairs or replacement. It also allows for high-strength tissue growth and helps avoid bone grafting and suturing, while offering potential to restore full hand and wrist functionality immediately,” said Dr. Salas about the research project.

unm-health-sciences-centerDr. Salas is working with student researchers from UNM’s Mechanical Engineering Department and its Electrical and Computer Engineering Department, where she holds a joint appointment. The project will continue for the rest of 2017, and the final results will be published in the American Society for Surgery of the Hand’s (ASSH) publication, The Journal of Hand Surgery, and presented at its annual meeting in the fall.

Dr. Salas explained, “The long-fiber materials this research project will use for bone-ligament scaffolds show great potential as a biodegradable polymer that, when combined with 3D printing, might enhance scaffold stiffness and strength capabilities to match those of human ligament.”

womeninstem-unmJulia Fulghum, the director of Advance at UNM, a National Science Foundation-funded project which works to increase the number of minorities and women in STEM fields, says they are excited about this research, and about the contributions to new field information made by Dr. Salas. UNM is also in charge of the Women in Stem Award previously mentioned. Discuss in the UNM forum at 3DPB.com.

[Sources: UNM, KOB4]

 

Share this Article


Recent News

3D Printing News Briefs, June 30, 2022: Nuclear Power Filters, Fuzzy Filament, & More

6K Expands Metal 3D Printing Powder Line into Europe



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Grand Opening: AddUp Solution Center Offers LPBF & DED Metal 3D Printing

Global metal additive manufacturing OEM AddUp Solutions was established as a joint venture by French companies Michelin and fives back in 2015. The company’s main technology is laser powder bed fusion (LPBF) technology, but...

“World’s Most Efficient” A/C System to Be Built with 3D Printing

Hyperganic, a German developer of AI-based engineering software, has announced a new project aiming to create the world’s most efficient residential A/C system. The company is partnering with Strata Manufacturing,...

Online 3D Printing Service Sculpteo Announces New CEO

Sculpteo, BASF’s French 3D printing service, announced that the company’s new CEO is industrial designer Alexandre d’Orsetti. Promoted from in-house, d’Orsetti was previously the head of Sulpteo’s design studio for...

Featured

On the Ground at Velo3D’s New European Tech Center for Metal 3D Printing

Today, Velo3D (NYSE: VLD) opened a European Technical Center in Augsburg, Germany. The U.S. company has crossed over to Europe, where it can better educate and showcase its capabilities to...