University of Nottingham Researchers Use 3D Scanning to Reveal Secrets of Hidden Priest Hole Chamber in Tudor Mansion


Share this Article

the-university-of-nottingham-newTwo years ago, the University of Nottingham in the UK received funding for a lab filled with analysis equipment and roughly £2.7 million worth of 3D printing equipment. It’s not just for anyone: the lab’s main priority is for scientists from the Additive Manufacturing and 3D Printing Research Group (3DPRG) to study 3D printing in the pharmaceutical field. But engineers with 3DPRG have been hard at work developing new additive manufacturing processes to make cars more fuel efficient and less noisy, and some of the leading members of Curious Travellers, an organization aiming to protect culturally important and historic relics through 3D models, are from the university. In a similar field with this last project, scientists from the university’s Department of Archaeology recently used 3D laser scanners to uncover secrets of a hidden room in a Warwickshire mansion.


Coughton Court is now owned by the British heritage charity National Trust, which keeps it open to the public for much of the year as an historic building.

Looking at this gorgeous English Tudor mansion, called Coughton Court, you can just imagine there are all sorts of secrets hidden inside. This particular study was funded by Britain’s National Lottery and revealed more information about a hidden tower room in the mansion’s gatehouse, called a priest hole, which was used as a hiding place for 16th and 17th century priests during anti-Catholic persecutions. According to Christopher King, one of the lead study researchers and an assistant professor in the Department of Archaeology, Catholic priests at this time were considered to be traitors under English law.

Many priests faced grave danger by traveling around England in disguise to perform secret, banned ceremonies at wealthy country homes like Coughton Court; they faced execution if caught. The priest holes were built between floors and inside walls, so the families could hide priests from murderous search parties. The Coughton Court priest hole was discovered by later owners of the home in the 1850s.

King said, “We know that priests were hiding in these spaces for up to three days while people were searching the properties, and some of them are really very small, where the priest would be in quite an enclosed box-like space.”


To show the surrounding structure of the house, archaeologist Chris King (right) and mapping specialist Lucasz Bonenberg (left) laser-scanned the interiors of all the rooms in the building, as well as the exteriors and the surrounding grounds.

King and the other researchers used 3D LIDAR laser scanning equipment to map the priest hole and other secret chambers in the house, to determine where they were located in relation to the rest of the building and its grounds. Using Leica 3D laser scanners, they discovered something fascinating from the composite images and 3D computer models: the chamber was built using what’s known as a double-blind construction, so search parties would be fooled into thinking they’d found an empty chamber.

“When they’re searching, they think they’ve found the priest hole but it’s empty, but actually the priest is hidden in the more concealed space beyond. And that’s what happens at Coughton: there’s one chamber under the floor in the turret of the tower, and then there is another trap door that goes through into a second space, which we assume is where the priest was actually hiding,” said King.

The priest hole presented a unique challenge for King and Lukasz Bonenberg, a geodesy and mapping specialist with the university’s Geospatial Institute.

“They are quite narrow, probably about a meter [3.3 feet] across, and quite tall and thin,” said King. “It was difficult to get the scanner in there, and Lukasz ended up spending a couple of hours down there with the equipment, basically because he’s the skinniest.”

King went on to explain another secret of Coughton Court. The mansion played an important role in what’s known as the Gunpowder Plot: a failed assassination attempt of King James I in 1605 that was inspired by Catholic resentment over the country’s anti-Catholic laws. The plan was to blow up the House of Lords at Westminster, while the king and his government ministers were there. One of the conspirators, Sir Everard Digby, rented Coughton Court as a family home, and on the agreed upon assassination date of November 5 (now known as Guy Fawkes Day, or Bonfire Night, in the UK), a group of the leading conspirators met there to await news. But they all ran away when a messenger came and said that the plot had been discovered; many were later captured and executed.

To reveal how the priest hole was constructed inside the pre-existing structure of the building, the researchers made precise 3D maps of the interior of the secret space with a Leica laser scanner.

To reveal how the priest hole was constructed inside the pre-existing structure of the building, the researchers made precise 3D maps of the interior of the secret space with a Leica laser scanner.

The UK heritage charity National Trust currently owns Coughton Court and keeps the majority of the property open to the public, including the tower where the priest hole is located. However, the actual tower is generally not accessible to most people, so it’s great that the research team was able to scan the entire mansion, inside and out, as well as its grounds, with terrestrial laser scanning.

According to Bonenberg, “Terrestrial laser scanning is an important new technology for recording ancient monuments as they capture a huge amount of data very quickly and this is the first time that TLS has been used for the purpose of visualising hidden spaces inside Tudor houses.”

At Coughton, the priest-hole is hidden away out of sight and the 3D model will really help visitors to understand where it fits inside the building. Scan pictured [Image: Daily Mail, via University of Nottingham]

At Coughton, the priest-hole is hidden away out of sight and the 3D model will really help visitors to understand where it fits inside the building.

King agrees, and also hopes that they can expand the project and investigate other priest holes in historic English houses.

King said, “The scans and the fly-throughs that we’ve created will be really good for people who can’t get up the stairs to the priest hole – you can stand in the courtyard with these images and it really helps you visualize where the space is.”

There are thought to be around 30 priest holes in existence, he added, but many are not open to the public and are deliberately difficult to access.

“That’s really important from a public outreach point of view: making sure that visitors are aware of these spaces and their very interesting histories, and, hopefully, getting people interested in the stories associated with the buildings.”

Discuss in the Hidden Priest Chamber forum at

[Sources: Live Science, Daily Mail / Images: University of Nottingham]




Share this Article

Recent News

3D Printing Serves as a Bridge to Mass Production in New Endeavor3D White Paper

3DPOD Episode 200: Joris and Max Wax Philosophic on Five Years of Podcasting


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like


Printing Money Episode 18: The DC Fly-In with Mark Burnham, AddMfgCoalition

It’s only been a week since the previous show, but Printing Money is back already with Episode 18. Certain events call for Printing Money’s coverage, and the recent 2nd Annual...

3DPOD Episode 199: Collaborative Design with Graham Bredemeyer, CEO of CADchat

About a decade ago, entrepreneur Graham Bredemeyer started Collider, a company that combined the best of 3D printing with injection molding. Now he runs CADChat, which hopes to make sharing...

Printing Money Episode 17: Recent 3D Printing Deals, with Alex Kingsbury

Printing Money is back with Episode 17!  Our host, NewCap Partners‘ Danny Piper, is joined by Alex Kingsbury for this episode, so you can prepare yourself for smart coverage laced...

3DPOD Episode 198: High Speed Sintering with Neil Hopkinson, VP of AM at Stratasys

Neil Hopkinson, a pioneering 3D printing researcher, played a pivotal role in developing a body of research that is widely utilized today. He also invented High Speed Sintering (HSS), also...