When it comes to utilizing 3D printing technology to produce medical devices and tools, there is usually a comprehensive trial that these printed materials must undergo before they can be applied in the healthcare sector. These pre-clinical studies help to unearth the benefits and disadvantages of these potential medical solutions, comparing them to other biocompatible materials that are commonly used in similar applications. The medial technology company Stryker is one of the pioneers of using 3D printing technology to enhance the production of medical devices and implants.
After announcing plans to start construction on a multimillion-dollar 3D printing manufacturing facility earlier this year, Stryker went on to develop their 3D printed Tritanium Posterior Lumbar (PL) Cage Spinal Implant, which was debuted at the American Association of Neurological Surgeons (AANS) Annual Scientific Meeting back in May. Last week, the Spine division of the medical technology company announced the completion of a pre-clinical study for this Tritanium PL Interbody Cage.
The results of the study compare their highly porous titanium alloy with the biomechanical, radiographic, and histological performance of commonly used implants with different surface technologies in an ovine lumbar interbody fusion model. The materials involved in the comparative study include traditional PEEK cages and plasma-sprayed titanium-coated PEEK cages. Using their proprietary Tritanium Technology, Stryker was able to produce a material with porous structures that resembles spongy bone tissue.
“Stryker’s proprietary Tritanium Technology, a novel, highly porous titanium alloy material designed for bone in-growth and biological fixation, is based on new additive manufacturing techniques pioneered by Stryker over nearly 15 years,” said Bradley Paddock, president of Stryker’s Spine division. “Tritanium, and this important new study, demonstrate Stryker’s commitment to bringing the latest technologies to our customers, and a growing number of surgeons are turning to our new Tritanium PL Cage.”
The pre-clinical study demonstrated that Stryker’s Tritanium PL cages promoted reductions in segmental motion, as well as increases in construct stiffness across all three loading directions between the prepared 8- and 16-week post-implant time points. Neither of these advantages were found when utilizing PEEK and plasma-sprayed titanium-coated PEEK cage groups (p<0.02). In addition, micro–CT and histological data showcased much greater total bone volume within the Tritanium PL Cage at the same 8 and 16 week periods when compared the other treatment groups.
The study, entitled “Biomechanical and Histologic Comparison of a Novel 3D-Printed Porous Titanium Interbody Cage to PEEK”, was recently published in The Spine Journal. Stryker also made the results of this pre-clinical interbody fusion study is also available on their website. The results of this study were presented at the North American Spine Society (NASS) Meeting, which took place in Boston from October 26-29.
All in all, the results show their Tritanium PL cage implant to have superior range of motion, quality bone in-growth profile, and greater construct stiffness when compared to the other cages. Still, these findings have yet to demonstrate this correlation to human clinical outcomes, which will likely be the next step for Stryker to make this implantable material useful to the medical sector. Discuss in the 3D Printed Spinal Implant forum at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Shell Certifies 3D Printed Valve from Bonney Forge
The international classification society DNV has issued CE certification to Shell and US-based manufacturer of fittings and valves, Bonney Forge, for a 3D printed gate valve. Shell and Bonney Forge...
Australia’s 3D Printing Market is Starting to Hit its Stride
Three announcements that have become typical for Australia’s small but increasingly significant 3D printing market all happened within a few days of each other. First, Titomic, a manufacturer of cold...
3D Printing News Briefs, August 26, 2023: Materials, Electroplating, Consumer Goods, & More
It’s all materials, all the time in today’s 3D Printing News Briefs, starting with AddUp adding an aluminum alloy by Constellium to its materials portfolio. igus introduced an online service...
Lockheed Orders Titanium Plate from 3D Printing Materials Company IperionX
IperionX, a Charlotte, NC-based metals supplier specializing in titanium powders for additive manufacturing (AM), announced that the company has received an order for titanium plate components from defense giant Lockheed...