Stryker’s Spine Division to Debut 3D Printed Tritanium Posterior Lumbar Cage Spinal Implant

Share this Article

3dp_spinecage_stryker_logoThis week at the American Association of Neurological Surgeons (AANS) Annual Scientific Meeting, which is being held in Chicago until May 4, medical technology company Stryker will debut their newest Tritanium innovation. Stryker’s proprietary Tritanium technology has now been applied to spinal implants designed to encourage healthy regrowth of the bone tissue, and to reduce any strain or damage caused by being implanted. The Tritanium Posterior Lumbar (PL) Cage is a 3D printed intervertebral body fusion device that was developed to help patients dealing with lumbar spinal fixation due to ongoing back problems brought on by degenerative disc disease.

Despite its name, degenerative disc disease (DDD) is neither a disease nor is it degenerative in the classic sense. While the condition may be referred to as a disease, it is actually simply a degenerative condition of one or more of the discs in the spine, typically related to simple aging. And despite being classified as degenerative, the condition won’t progress with age – in fact the symptoms actually tend to lessen with age. In this case degenerative is simply a description of the condition of the disc, not a prognosis. That being said, severe or persistent cases of DDD that cannot be solved with medication or physical therapy may need to be corrected surgically.

Human bone cross-section.

Human bone cross-section.

There are actually several surgical options available to those suffering from DDD, and one of the more recently developed is the new Tritanium Posterior Lumbar Cage from Stryker. This implant is made using Stryker Spine Division’s Tritanium technology, which is a proprietary process of 3D printing using a specially developed material. Tritanium is a extremely porous titanium alloy material that will encourage bone in-growth and biological fixation. This is due to the material’s porous internal structures that mimic cancellous bone, or the spongy trabecular bone material found inside of human bones.

“We are pleased to bring this technology advancement to spine surgeons and their patients. Stryker is a pioneer in 3D additive manufacturing, investing nearly 15 years in research and development. Unlike traditional manufacturing techniques, the flexibility of our 3D additive manufacturing capabilities allows us to precisely engineer and produce porous Tritanium devices. The Tritanium PL Cage is an exciting addition to our growing suite of unique spinal products,” Stryker Spine Division President Brad Paddock explained.

Spinal cade implants.

Spinal cage implants.

The Tritanium Posterior Lumbar Cage is implanted in what is called a posterior approach, which will not damage any muscle tissue around the spine. The cage will be available in several different sizes, widths, lengths, heights, and lordotic angles that will make it easy to adapt to a wide variety of different patients’ anatomies. Also, the geometry contains large lateral windows and open architecture that will allow doctors to easily visualize bone fusion and regrowth on CT scans and X-rays, so recovery can be easily monitored. The design also maximizes the surface area for endplate (the top and bottom parts of the vertebrae) contact with the spinal cage implant, and will minimize any damage to them.

“Spine surgeons need a cage that has the capability of bony integration or bony in-growth, as well as radiolucency so that we can evaluate the fusion long term. Because Tritanium has favorable radiographic capabilities, as well as the integrative surface technology, that really in my opinion is what I would ask for from an interbody cage,” said Dr. Wellington Hsu, M.D., Orthopaedic Surgeon at Northwestern Medical Group. 

3dp_spinecage_Stryker-Tritanium

The Stryker 3D Printed Tritanium Posterior Lumbar Cage Spinal Implant

Stryker’s Tritanium Posterior Lumbar Cage is the just latest medical implant to take advantage of advanced medical-grade 3D printing to create porous geometries that encourage full integration with the human body. The purpose of using porous structures is to attempt to simulate the mechanical properties of bone, while still offering the strength and durability of a medical implant. The implant has received FDA approval and has been cleared for use in the lumbosacral spine. It is expected to be made available to surgeons mid-2016.

Stryker currently develops several Tritanium devices, mostly for knee and joint replacement, however they have also developed skull plates and other less common implants. Stryker offers their medical products to more than one hundred countries, in areas as diverse as Orthopaedics, Medical and Surgical, and Neurotechnology and the Spine. You can find out more about the company and their 3D printed medical devices over on their website. Discuss in the Stryker 3D Printed Titanium Implant forum over at 3DPB.com.

Share this Article


Recent News

Additive Manufacturing Collaboration: Ai Build & WEBER Offer Advanced Large-Scale 3D Printing Solutions

Qrons is Developing 3D Printable Implants to Treat Brain Injuries



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Awakens Renewed Interest in Polymeric Heart Valves for Patient-Specific Treatment

Authors Charles D. Resor and Deepak L Batte review the recent work of André R. Studart and his co-researchers in creating artificial heart valves via 3D printing. Their findings are...

3D Printed Microfluidic Device Designed to Customize Cancer Treatment

Testing cancer treatments is a lot of trial and error currently, and patients are often subject to multiple uncomfortable and time-consuming therapies before finding one that works. Developments have been...

Comparing the Operational Characteristics of Plastic 3D Printed Spur Gears

Spur gears, which can achieve high transmission ratio and energy efficiency, are comment elements used in the transmission of motion and high intensity power for mechanical power drives, i.e. belt...

Russian Researchers Develop Biocompatible 3D Polymeric Materials for Tissue Repair

Many researchers and scientists have turned to 3D printing for applications in tissue engineering, and a team from the Polymer Materials for Tissue Engineering and Transplantology Laboratory of Peter the Great St....


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!