AMR Software
AMR Data Centers

New 3D Printed Lost Shell Sand Casting Technique Offers Fine Detail in Metal

RAPID

Share this Article

Untitled

Jeshua Lacock

We have the privilege of viewing many action-packed videos from innovators showing what their new creations are all about, while in the moment. Seeing technique mixed with the drama and excitement of what these artists love to do is certainly refreshing, whether they are coming from snowy peaks, crashing ocean waves, or even fire, which Jeshua Lacock seems to be quite fond of using in his endeavors.

When we last caught up with the founder of 3DTOPO, based in Boise, he was still refining his Lost PLA Casting process and working on his giant glass 3D printer. More than your average DIYer or handy-around-the-house kind of guy, if something breaks on a machine, he just makes a new part—even if it’s metal. But when you watch the processes involved, you can see why not everybody is doing this in their workshop.

ee26f7c0-5806-40b0-9f1a-4c58d6ede9ebBeing self-sustainable can be some complex business, but it’s obvious that this comes quite easily to someone like Lacock, and thankfully he shares his techniques with anyone else who is interested in such processes. Recently, Lacock took some time out to share his newest method with us—and it’s probably unlike anything you’ve ever seen. He’s named it the 3D Printed Lost Shell Sand Casting technique, and I can’t figure out if the process or the results are more exciting, but if you’re interested in casting in metal, this is definitely worth having a look at.

“As far as I know, the technique is new to the world,” Lacock recently told 3DPrint.com.

Stating he received numerous comments that his Lost PLA Casting technique looked ‘like too much work,’ Lacock decided to try something different with his new technique, casting in copper. (Note: There is brief shop talk/profanity in the video.)

“This method is much faster, easier and less expensive,” he told us.

unnamed (10)While this method is certainly not meant for the novice, Lacock points out that sand casting with 3D prints certainly isn’t anything new. It is limited, however, in terms of his general project requirements.

“With that technique, only parts that can be removed from the sand are feasible – undercuts, cores, etc. are all limitations of that process,” said Lacock. “By burying and burning the print out directly in the green sand, those short-comings of sand casting are eliminated and brings most of the benefits of the Lost PLA technique–though the casts are not quite as detailed as that technique.”

The Lost Shell Sand Casting technique works with ferrous metal too, eliminating the need for ceramic shell, and of course the beauty of sand is that it can be used repeatedly when you are working in this medium. And in this technique, again, Lacock did use a 3D model that was printed using PLA filament with 0% infill.

All of the images here showing examples of this new technique are direct from the sand, with no clean-up, with the parts weighing anywhere from 10-15 pounds. When the sand is packed tighter, you’ll notice that you see the 3D printed striations more clearly, which Lacock finds helpful to see since their goal here is to accomplish as much detail as possible and he can use them as ‘a ruler for detail achieved.’

Untitled

Lacock uses a 15kw induction generator during this technique, and finds that to be most efficient, melting 8kg of copper in about 20 minutes (costing you about $0.20 in electricity), and also capable of melting steel. They used a high-purity 8kg graphite crucible here, but for ferrous work, employ a clay-graphite crucible.

In their next documentary, Lacock and his team plan to work with steel, and will also be showing the induction generator in a future video if you are curious to find out more about that. Discuss this new technique further in the Lost Shell Sand Casting for 3D Printed Models forum over at 3DPB.com.

Untitled

f16741e4-055a-4ca9-b82a-aa05cb1a3dc3

Share this Article


Recent News

Fantasy Pets & Its 3D Printed Dragons: Scaling Small Business Operations with 3DPrinterOS

3D Printing News Briefs & Events Roundup: March 15, 2025



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Software Market to Hit $6.78B Revenues by 2033

Additive Manufacturing Research (AMR) has released a new edition of its flagship market study, “AM Software Markets 2025: Analysis, Data and Forecast,” offering deep insights into the 3D printing software...

3D Printing News Briefs & Events Roundup: March 8, 2025

Starting this week, we’re shaking things up a little! We’ll be combining our 3D Printing News Briefs with a more curated weekly list of 3D printing webinars and events to...

3D Printing Financials: Stratasys Ends 2024 with Cost Cuts and Growth Plans

Stratasys (Nasdaq: SSYS) has wrapped up 2024 with stronger margins but a full-year net loss. The polymer 3D printing leader navigated a year of economic headwinds, restructuring efforts, and shifting...

Stratasys’ 3D Printing Takes on Cadavers in Surgery Training and Imaging

Stratasys and Siemens Healthineers have developed 3D printed, patient-specific anatomical models that replicate human tissue with incredible accuracy, transforming medical imaging, surgical planning, and education. Traditionally, surgeons have relied on...