“Fossilized” Project Takes a Creative but Practical Approach to Concrete 3D Printing

IMTS

Share this Article

amalConcrete is usually not a material that one associates with artistic expression. It’s a utilitarian material, meant to be poured and scraped, walked upon or leaned against. 3D printing, however, has revitalized concrete’s creative potential. Incredible shapes and textures have been created by artists armed with concrete and 3D printers, but the material’s functional attributes aren’t being ignored: concrete is also being explored as a medium for 3D printing entire buildings.

A group of students at the Bartlett School of Architecture have been experimenting with concrete printing as a way to combine both the artistic and the functional. The team, which calls itself Amalgamma, is composed of four Masters students — Alvaro Lopez Rodriguez, Francesca Camilleri, Nadia Doukhi and Roman Strukov — who took on a year-long research project to develop new methods for 3D printing concrete. The project, entitled “Fossilized,” had several objectives.

amalgamma“Fossilized is a project that attempts to counteract current ‘stagnant’ 3D printing practices, aiming to reinstate the concept of craftsmanship back into architectural design by adopting a more tectonic approach to 3D printed form,” the team states. “Rather than focussing on actual form generation, this is achieved through an understanding of aggregation and heterogeneity at the material level, encouraging the dissolution of boundaries at the massing, structural and material scales.”

The results of the project are anything but stagnant. Amalgamma’s printed concrete structures are twisting, multi-layered columns that resemble ancient, decaying trees. Despite their fragile appearance, though, the structures are strong; one of the team’s objectives is to produce sculptural elements that can also serve functional architectural purposes.

To achieve these results, the group created a novel method of 3D concrete printing that actually combined two different techniques. The first was basic extrusion, using a large industrial robotic arm to extrude the concrete material. The second was powder bed printing. Normally, powder bed printing utilizes a laser beam or binding agent to fuse layers of powder together; Amalgamma’s process used the “powder” – in this case, a granular, rock salt-like substance – strictly as a support material.

Basically, the concrete is extruded onto a bed of the granular material. As the layers of concrete are extruded, a second tool head on the robotic arm deposits more of the granular material around it. The support material combines with the wet concrete to strengthen the weaker parts of the structure. Not only that, the salt-like material adds an extra element of beauty to the finished columns, making them appear as if they are covered with ice, frost, or some sort of lichen.

concreteAmalgamma believes that their technique could dramatically reduce the amount of material wasted in traditional construction methods. Rather than using solid, heavy slabs of concrete to create columns or walls, the Fossilized method allows for structurally sound elements to be produced with much less material:

“Although 3D printing a whole structure from start to finish may not be possible due to fabrication constraints, it could be possible to print, for example, a floor-wall-ceiling assembly or a stair-floor-wall assembly as one whole architectural chunk – each chunk equally designed as a unique object capable of existing independently.”

Fossilized is the only project Amalgamma has completed so far, but they continue to develop the process under the tutelage of several Bartlett professors. We’ve seen several 3D printing and other tech-related startups form out of student collaborations; I wouldn’t be at all surprised if, within a few years, Amalgamma turns into an innovative and successful architectural firm. Discuss your thoughts on this project in the Fossilized 3D Printed Concrete forum over at 3DPB.com.

Share this Article


Recent News

“Bundled Light” Enables High Quality Plastic 3D Printing from LEAM

Stoke Space Deploys Solukon’s Automated Depowdering for 3D Printing Reusable Rockets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: March 24, 2024

We’ve got a very busy week of webinars and events, starting with Global Industrie Paris and a members-only roundtable for AM Coalition. Stratasys will continue its advanced in-person training and...

New EOS M 290 1kW Enables Copper 3D Printing for New Space, Automotive, and More

EOS has released a new EOS M 290 1kW metal powder bed fusion (PBF) system, designed specifically with copper in mind. Initially developed by its custom machine building subsidiary, AMCM,...

3D Printing Webinar and Event Roundup: March 3, 2024

In this week’s roundup, we have a lot of events taking place, including SPE’s ANTEC 2024, Futurebuild, the AAOP Annual Meeting, JEC World, and more. Stratasys continues its training courses,...

EOS Taps 1000 Kelvin for “First” AI Co-pilot for 3D Printing

Additive manufacturing (AM) startup 1000 Kelvin has joined forces with EOS to integrate AMAIZE, a pioneering artificial intelligence (AI) co-pilot for AM, into the EOS software suite. The solution aims...