Fabrisonic: Sound Waves are Building 3D Metal Prints Through Both Additive & Subtractive Processes

Share this Article

UntitledWith 3D printing, just when you think you’ve seen it–or heard it–all, something else takes its place in the forefront immediately, proving you wrong. While we have followed numerous, and very unique, stories regarding the actual 3D printing and translation of sound waves into the physical, from sound sculpture to echolocation, we’re now focused on the reverse: soundwaves driving 3D printing. And we aren’t talking plastic figurines here, either. Fabrisonic has developed a system for soundwaves to actually merge metal foil, allowing for dense, 3D objects forged from true metallurgical bonds in materials such as aluminum, copper, stainless steel, and titanium.

image_rotate_1-1With this harnessing of sound during the ultrasonic additive manufacturing (UAM) process, the use of extreme temperature and the need to melt the metal is eliminated. The objects are created in metal through numerous metal tapes that are welded together via the sound waves, with required details. The ultrasonic system itself is centered around a welding horn, accompanied by transducers that vibrate. These transducer vibrations are sent to the horn which then begins creating the solid weld between thin metal tape and a baseplate. Through the continuous ‘rolling of the horn’ the entire tape is welded to the plate.

In a combination of both additive and subtractive, this process allows for the use of traditional procedures and new technologies to produce a superior product. The succession of metal tapes, welded from side to side and then one on top of another, is what creates the eventual whole, while a machining process is responsible for additional features, as well as removing excess material.hron

Fabrisonic has patented this technology and uses it in their hybrid additive/subtractive systems which operate at a very low temperature; for example, for aluminum, the peak temperature is below 250°F. The ‘solid-state nature’ is the prime benefit of the process, which also offers the following:

  • Protection of material properties, as they are not exposed to extremes. Fabrisonic states that because of that, they don’t go through transformation in grain size, precipitation reactions, or phase changes.
  • Bonding of metals that are different without resulting in brittleness. Because of this, the team can combine materials like aluminum and titanium for a custom, lightweight product.
  • The ability to embed electronics such as microprocessors, sensors, and telemetry, due to the fact that they are not subjected to high temperatures.

Untitled

“Traditional manufacturing has been optimized for high volume, low variability products that change slowly over time,” states the team on their website. “New pressures in a global market are accelerating design changeover and requiring increasing customization. 3D printing enables manufacturing driven by design; wherein CAD can be tweaked for every part and there is little to no cost for variation.”

Using their SonicLayer 3D printers, such as the 4000, the Fabrisonic team is able to print from 15 to 30 cubic inches per hour, offering a much larger build volume and meeting the requirements of industrial clients. The SonicLayer 4000 has a print bed size of 24” x 36” while the SonicLayer 7200 can accommodate parts 6 x 6 x 3 ft.Additive-Manufacturing-4-Website-e1423056956552

These hybrid systems begin with a CNC mill foundation, to which a welding head is added for 3D printing to add material (rather than subtract). The milling system is then used to create the final shape, allowing for a ‘silky smooth final surface finish’ with tolerances of +/-.0005”. Fabrisonic also recommends their hybrid systems for repair and maintenance of parts, as the subtractive processes can be used to ‘machine away’ areas that are damaged. Once that’s finished, the 3D printing portion can build them back up.

The UAM process is another great example of an innovative company creating machinery and methods to create superior, strong products while using a mix of old and new processes. Fabrisonic is able to use the most important benefits of both technologies for metal printing–a rapidly growing trend in 3D printing.  Discuss this article in the Fabrisonic forum thread on 3DPB.com.

[h/t and Image: Machine Design]

Share this Article


Recent News

Safety and 3D-Printed COVID-19 Medical Devices — An Interview with Veterans Affairs

Techshot’s Bioprinter Successfully Fabricates Human Menisci in Space



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sciperio Partnering with Multiple Research Companies to Make Human Blood On Demand for Military

Funded by the US Defense Health Program, 4-Dimensional Bioprinting, Biofabrication, and Biomanufacturing (4D Bio3) is a collaboration between the Uniformed Services University of the Health Sciences (USUHS) and The Geneva...

The Countdown to the “Don’t Stop Me Now” Mission Has Begun for Rocket Labs

Space is one of the most attractive frontiers for humans and 2020 has been one of the most exciting years for space exploration. For starters, companies are sending rockets to...

Techshot’s New Projects Will be on the Next SpaceX Mission Launch

2020 is already promising to be a fantastic year for space exploration. The next generation of Artemis explorers can begin applying for the program that will be journeying to the...

Long Beach: The New Site for Relativity Space’s 3D Printed Rockets

Commercial space companies are looking to get their technology to orbit. This decade could mark a big shift in the race for space domination, with a few big names taking...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!