GE & DOE Research: Might 3D Printed Turbines Unlock Secret to Affordable Desalination of Ocean Water?

Share this Article

GE_lockup_cyanCMYK_IaW_LR (1)In a new project that sounds extremely futuristic, but completely normal coming from GE and their Global Research Center in upstate New York, they will be using 3D printed turbines in research and development for an intricate process that could make desalination of saltwater truly feasible, finally unlocking the key to using the vast amount of ocean water available for human supply.

Desalination is the process of removing salt–and other minerals–from water. While there are numerous alternative methods for doing this already, it is generally cost-prohibitive and uses exorbitant amounts of energy to do so. Because only a small percentage of the world’s water is actually available through other sources besides the ocean, this is a challenge we humans just keep ticking away at, trying to find a way to take the salt out of the ocean affordably so that we can use it for human consumption in mass proportions.

US-Department-of-Energy-LogoLooking at a global perspective, few populations actually rely on desalinated water so far today, but as water becomes more and more scarce over the years, this is certainly an option we all need to keep working on. The US Department of Energy (DOE) is well aware of this, which is why they are partnering with GE in a new program to further innovative methods that can work long-term.

With the design and engineering concepts of Thomas Edison still going strong, researchers at GE were inspired by production of another crucial element we humans so require today: power.

As leaders in steam turbine technology, researchers at GE examined their own handiwork, which relies on pressurized steam for rotation and allowing generators to make electricity. They realized that the turbines had potential also for working in desalination. The only difference is that they’ve brought 3D printing into the picture to customize the necessary components, reaping another of the greatest rewards in additive manufacturing–as it allows for such latitude in design–and the creation of components that may not have previously been possible in the current capacity.

These 3D printed turbines have been scaled down significantly but will use GE’s same technology in causing a compressed combination of air, salt, and water to flow into a ‘hyper-cooling’ loop that is actually able to freeze saltwater. Upon freezing, the salt is separated from the ice, which in turn becomes clean water. The key for GE is in desalination with innovation–and that’s where 3D printing will be able to offer its main benefits, as it has in so many other sectors.

“97.5% of the earth’s water supply is virtually inaccessible because water desalination is still too expensive and difficult to deploy at a large scale. By putting desalination ‘on ice,’ we hope to change that dynamic,” said Vitali Lissianski, a chemical engineer and project leader at GE Global Research’s Energy Systems Lab. “Freezing seawater to treat it is nothing new, but the way we are doing it is very different. We’re tapping into our wealth of technical knowledge in turbomachinery to devise a cost-effective solution.”

“You might say we’re turbo charging our way to an affordable water desalination system,” Lissianski added.

UntitledWith GE’s knowledge of desalination and turbomachinery brought into the fold of 3D printing, this may be an incredible boon for those who have been trying to solve the riddle of affordable desalination as well as everyone across the world, considering water is necessary to the life cycle of all.

“GE’s expertise with multiphase flows in steam turbines is a foundation for the development of a turbine for desalination technology,” said Douglas Hofer.

Hofer, leading the turbine technology development, is able to point out what makes this desalination process different, in that they are freezing the saltwater into ice and crystals while it is expanding through the turbine.

“Cooling the salty water, or brine droplets, by expanding cold gas in the turbine would greatly reduce the energy required for desalination,” said Hofer. “The heat transfer between the cooling gas and brine would be much more efficient compared to conventional thermal desalination systems.”

Customization comes in as a key component in this process because of the size of traditional steam turbines such as the ones seen in power plants. Built to enormous proportions and taking months to produce, the researchers from GE are taking that concept and putting it into miniature with digital design and additive manufacturing at their New York Global Research lab, as well as GE Aviation’s additive manufacturing facility in Cincinnati, Ohio.Untitled

Certainly not the first time we’ve seen 3D printing emerging regarding power or water, it is often connected with both because of the benefits 3D printing can offer in self-sustainability. There are so many incredible innovations happening within the 3D printing industry right now from manufacturing rocket components to using the technology within the medical industry for bioprinting, 3D models that assist in difficult and new surgeries, and creating a thriving world of 3D printed prosthetics, many made by volunteers; however, what 3D printing offers in terms of self-sustainability is a huge conversation unto itself.

The program between GE and the DOE will continue into the summer of 2016, at the end of which they hope to present optimistic findings regarding this new concept and a valid way to bring it to fruition with all the benefits of 3D printing.  Discuss the possibilities of ocean desalination in the 3D Printed Turbine forum thread on 3DPB.com.

[Images: Business Wire]

Share this Article


Recent News

DOE Awards Iowa State $1M to Research 3D Printed Tungsten for Nuclear Energy

ELSTM Introduces 3D Printed Sneakers, $250 a Pair



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Amnovis 3D Prints 50,000 Implants without Heat Treatment

Amnovis has announced that it has produced 50,000 implants using its proprietary heat-treatment-free 3D printing process. These implants have been used in the spine, orthopedics, and CMF markets since 2021....

3D Printing News Briefs, September 12, 2024: Scholarships, Pool Maintenance, Shoes, & More

In 3D Printing News Briefs today, four graduate students received $10,000 scholarships from ASTM International, and 3DPRINTUK announced the first commercial launch of the Stratasys SAF printer in the UK....

HILOS Launches Studio OS for AI-Driven 3D Printed Shoe Design

At Milan Design Week, footwear 3D printing startup HILOS has unveiled its latest development, Studio OS. Introduced at the historical Villa Bagatti Valsecchi, the platform is meant to redefine how...

Further Understanding of 3D Printing Design at ADDITIV Design World

ADDITIV is back once again! This time, the virtual platform for additive manufacturing will be holding the first-ever edition of ADDITIV Design World on May 23rd from 9:00 AM –...