3D Printed Gold Collection Set to Transform Jewelry Industry

Share this Article

Heartbeat-3D-printed-gold-pendant-Lionel-T-Dean finishedLionel Theodore Dean is a graduate of the Royal College of Art, London, and following his schooling, Dean worked for automotive designer Pininfarina in Italy. He went on to launch his own design consultancy business with the rollout of a full-size concept car at the 1989 Tokyo Auto Salon.

Lionel Theodore Dean

Lionel Theodore Dean

While his work was initially found focus on small cars and motorcycles, he went on to design interior products – particular lighting – such as the Tuber9 lamp which is now a part of the MOMA collection. Back in 2002, Dean was appointed Designer in Residence at Huddersfield University where he began his FutureFactories digital manufacturing project for the mass individualization of products.

All this has led to exhibitions in London and Milan, and he now says digital manufacturing is certain to “reshape the jewellery industry.”

To that end, Dean has created a collection of pieces 3D printed in 18 carat gold as part of a project called Precious. It’s a collaboration between Delcam, precious metals supplier Cooksongold, Future Factories/Dean, Jewellery Industry Innovation Centre, Finishing Techniques, and a number of other designers were unveiled at Birmingham City University’s School of Jewellery.

“Additive manufacturing with metal allows you to create forms that would be almost impossible to create by conventional means,” Dean says. “The jewellery industry was one of the early adopters of additive technology, using it in an indirect sense, printing waxes and casting from those waxes. It’s been more reluctant to adopt direct metal processes.”

Dean says that, while the jewelry industry has used 3D printing to create molds for pieces which would ultimately be cast for a long time, it’s taken time for jewelers to 3D print their work directly in metal.

Cooksongold-precious-m080-3D-printer_dezeen_01It was the collaboration with Cooksongold – via their laser sintering device they call the Precious M 080 – which led Dean to begin directly outputting his designs. Cooksongold developed the Precious M080 working in conjunction with 3D printer manufacturer and innovators EOS, and it was built specifically to create objects in precious metals.

“Regular laser sintering machines have lots of cavities and places where powder can get trapped or lost. Obviously with the high value of gold powder, it’s important to capture every speck of material. The nice thing about the Precious M080 is that it’s designed specifically for gold,” Dean says.

In his recent efforts, Dean has designed a range of customizable, 3D printed pieces which fully demonstrate the capabilities of the technology. His pieces include intricate latticework rings and a small sculptural piece which holds tiny reproductions of various family heirlooms.3D-printed-gold-bangle-Lionel-T-Dean

“The customer brings in a piece of retired jewelry that’s not fashionable to wear, yet precious to them. We turn this into a contemporary piece by trapping elements of that jewelry into a contemporary design,” Dean says. “For me, the future lies in digital design tools and the direct link between those and the artifact you get. 3D printing will reshape the landscape of the jewellery industry as designers get to grips with the capabilities of digital technologies and master the skills to harness them.”

Orbis-3D-printed-gold-ring-Lionel-T-DeanDuring the course of the Precious project, Dean worked alongside software company Delcam, and the team developed a tool for rendering jeweler designs in ideal form for 3D printing which the designer hopes will someday be released as a commercial product.

Have you ever seen the EOS-developed Precious M080 at work? Let us know what you think in the 3D Printer for Precious Metals forum thread on 3DPB.com. Check out the video below for a look at the creation of the collection’s “HeartBeat” piece.

 

Share this Article


Recent News

Medical Startup axial3D Raises U$S 3 Million To Expand To New Markets

Carnegie Mellon: Optimizing Soft Materials 3D Printing With Machine Learning



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

4D Printing in China: Shape Memory Polymers and Continuous Carbon Fiber

Researchers have been looking further into the benefits of shape memory polymers (SMPs) with the addition of raw materials in the form of continuous carbon fiber (CCF). Authors Xinxin Shen,...

3D Printed Wireless Biosystems for Monitoring Cerebral Aneurysms in Real Time

Continuing to further the progress between 3D printing and electronics within the medical field, authors Robert Herbert, Saswat Mishra, Hyo-Ryoung Lim, Hyoungsuk Yoo, and Woon-Hong Yeo explore a new method...

Feasibility Models to Determine Efficacy of 3D Printing Over Traditional Methods

In ‘Model for Evaluating Additive Manufacturing Feasibility in End-Use Production,’ authors Matt Ahtiluoto, Asko Uolevi Ellman, and Eric Coatenea encourage the idea of exploring 3D printing for designs first, comparing...

Refining Macro and Microscopic Topology Optimization for AM Processes

Researchers from Italy and Germany continue along the path so many are following in refining and perfecting 3D printing processes. In the recently published ‘Structural multiscale topology optimization with stress...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!