AMR Software
AMR Data Centers

SMU Unveils Video of Unique LBDMD Metal 3D Printing Process Using 6-axis Robot

Share this Article

smu5Some may say that metal 3D printing is what will ultimately bring the technology to the forefront of manufacturing. The idea of printing custom objects on a one-to-one basis brings unlimited potential to the entire manufacturing sector. Currently there are numerous methods of printing with metal materials, most of which are extremely expensive, pricing the technology out of reach for the majority of companies and individuals.

smuaniResearchers at Southern Methodist University (SMU) have been working on a unique system of 3D printing metal objects, utilizing a 6-axis robot. The method is called Laser-based Direct Metal Deposition (LBDMD), and when combined with the Universitiy’s MultiFab System, provides for several benefits over other more common methods of additive manufacturing.

“MultiFab combines depositions by welding and laser cladding, multi-axis machining, and in-situ inspection into one highly integrated system based on a 6-axis robot and a 5-axis high speed CNC machining center, providing the next generation technology for rapid and precise net-shape manufacturing using metals and ceramics,” Radovan Kovacevic explained.

smu4

MultiFab is a process which utilizes a combination of laser technology with welding, and cnc machining to create metal objects of higher quality than other methods of 3D printing. The 3D printing process, unlike selective laser sintering (SLS) is able to build objects up, one layer at a time in a similar fashion as we have seen with FDM/FFF based machines which extrude plastics. Instead of extruding molten plastics however, the LBDMD method, lays down metal powder as a 4 kilowatt laser follows, sintering it in place.

smu1

The technology actually dates back to patent filings by Professor Radovan Kovacevic in 2003, in which he came up with a method of controlling the molten metal pools in the process of laser based additive manufacturing. However, Kovacevic and SMU have just recently released a video of their working prototype, which utilizes this controlled molten pool system that allows for the fabrication of objects with straighter, more symmetrical lines and geometries (seen below).

smu-controlled

Thanks to this laser system, the MultiFab process allows for less porosity in printed objects, a smaller heat affected zone, the ability to create fine geometrical features, potential for multiple metal fabrication, and better control of material properties. The welding aspects of the process lend themselves to creating objects with larger geometrical features, a controlled and higher deposition rate, and controlled heat input.

smu3

Both the LBDMD system and the MultiFab process remain a work in progress, but the potential is there for completely upending the metal 3D printing space. If a machine like this could be priced affordably, the future of metal product manufacturing looks very bright. What do you think about this process? Discuss in the LBDMD 3D printing forum thread on 3DPB.com. Check out the videos below.

 



Share this Article


Recent News

Push Button Metal 3D Printing for $50,000?

Rob Higby: How Continuum’s Scrap-to-Powder Model Caught Siemens’ Attention



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

New Business: Temporary, Migratory, & Modular 3D Printed Architecture

If we look at potentially emerging 3D printing businesses, then architecture has not been fully explored. Yes, there is a lot of house 3D printing going on worldwide. From deployable...

Velo3D Kicks Off New Strategy by Signing $15M Deal with Space Company

Velo3D (OTCMKTS: VLDX) just landed a five-year, $15 million deal with commercial space company Momentus (Nasdaq: MNTS). But this partnership is more than just a revenue boost; instead, it marks...

3D Printing News Briefs, April 12, 2025: RAPID Roundup

The news from last week’s RAPID+TCT in Detroit just keeps on coming! That’s why today’s 3D Printing News Briefs is another RAPID Roundup of more exciting announcements from the trade...

Continuum Powders Turns Siemens Scrap Into High-Value 3D Printing Material

Over the last five months of 2024, Continuum Powders turned almost one ton of nickel scrap per week from Siemens Energy into high-quality metal powder, the kind used for 3D...