SMU Unveils Video of Unique LBDMD Metal 3D Printing Process Using 6-axis Robot

Share this Article

smu5Some may say that metal 3D printing is what will ultimately bring the technology to the forefront of manufacturing. The idea of printing custom objects on a one-to-one basis brings unlimited potential to the entire manufacturing sector. Currently there are numerous methods of printing with metal materials, most of which are extremely expensive, pricing the technology out of reach for the majority of companies and individuals.

smuaniResearchers at Southern Methodist University (SMU) have been working on a unique system of 3D printing metal objects, utilizing a 6-axis robot. The method is called Laser-based Direct Metal Deposition (LBDMD), and when combined with the Universitiy’s MultiFab System, provides for several benefits over other more common methods of additive manufacturing.

“MultiFab combines depositions by welding and laser cladding, multi-axis machining, and in-situ inspection into one highly integrated system based on a 6-axis robot and a 5-axis high speed CNC machining center, providing the next generation technology for rapid and precise net-shape manufacturing using metals and ceramics,” Radovan Kovacevic explained.

smu4

MultiFab is a process which utilizes a combination of laser technology with welding, and cnc machining to create metal objects of higher quality than other methods of 3D printing. The 3D printing process, unlike selective laser sintering (SLS) is able to build objects up, one layer at a time in a similar fashion as we have seen with FDM/FFF based machines which extrude plastics. Instead of extruding molten plastics however, the LBDMD method, lays down metal powder as a 4 kilowatt laser follows, sintering it in place.

smu1

The technology actually dates back to patent filings by Professor Radovan Kovacevic in 2003, in which he came up with a method of controlling the molten metal pools in the process of laser based additive manufacturing. However, Kovacevic and SMU have just recently released a video of their working prototype, which utilizes this controlled molten pool system that allows for the fabrication of objects with straighter, more symmetrical lines and geometries (seen below).

smu-controlled

Thanks to this laser system, the MultiFab process allows for less porosity in printed objects, a smaller heat affected zone, the ability to create fine geometrical features, potential for multiple metal fabrication, and better control of material properties. The welding aspects of the process lend themselves to creating objects with larger geometrical features, a controlled and higher deposition rate, and controlled heat input.

smu3

Both the LBDMD system and the MultiFab process remain a work in progress, but the potential is there for completely upending the metal 3D printing space. If a machine like this could be priced affordably, the future of metal product manufacturing looks very bright. What do you think about this process? Discuss in the LBDMD 3D printing forum thread on 3DPB.com. Check out the videos below.

 

Share this Article


Recent News

What is Metrology Part 21 – Getting Started with Processing

Analyzing & Solving 3D Printing Issues with Microfluidics



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Multimaterial 3D Printing Filaments for Optoelectronics

Authors Gabriel Loke, Rodger Yuan, Michael Rein, Tural Khudiyev, Yash Jain, John Joannopoulous, and Yoel Fink have all come together to explore new filament options, with their findings outlined in...

Germany: Two-Photon Polymerization 3D Printing with a Microchip Laser

Laser additive manufacturing technology is growing more prevalent around the world for industrial uses, leading researchers to investigate further in relation to polymerization, with findings outlined in the recently published...

3D Printing Polymer-Bonded Magnets Rival Conventional Counterparts

Authors Alan Shen, Xiaoguang Peng, Callum P. Bailey, Sameh Dardona, and W.K Anson explore new techniques in ‘3Dprinting of polymer-bonded magnets from highly concentrated, plate-like particle suspension.’ While magnets have...

South Africa: FEA & Compression Testing of 3D Printed Models

Researchers D.W. Abbot, D.V.V. Kallon, C. Anghel, and P. Dube delve into complex analysis and testing in the ‘Finite Element Analysis of 3D Printed Model via Compression Tests.’ For this...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!