Using a combination of motors and 3D printed parts, he was able to create a robotic, voice-operated arm for a cost of about $260. Many high-end prosthetic arms can cost upwards of $35,000. Cheaper options are available, but with lower cost comes lower quality. Some have little function other than opening and closing the hand. Using a combination of voice control and electromyography, Mehta’s prosthetic hand can grasp, pinch, point, and perform other precise tasks the way a real hand would. It also comes a step closer to simulating the way a natural limb is controlled. Rather than the brain sending a command to the arm to move, the user speaks a command into a small microphone attached to the arm.
“You can say ‘spoon’ and the hand will make a shape that will be able to hold a spoon,” Mehta said.
Another factor the 17-year-old considered was upgradability. Children with prosthetics face a challenge that adult amputees do not. Prosthetics can be outgrown just as clothing can, and, as Mehta pointed out, many children need to change their prosthetics every six to eight months. By using inexpensive 3D printed parts, the robotic arm can be resized for a minimal cost.
In February of this year, Mehta entered his robotic arm into the Irvine Public School District science fair, where he won first place. He then went on to win four first-place awards in the Orange County Science and Engineering Fair, and was subsequently chosen to enter the 2015 Intel International Science and Engineering Fair in May. There, his project took third place in the biomedical and health sciences category. He also took a third place award in the California State Science Fair; you can see his project abstract here.
Now that the prototype has shown so much potential, Mehta plans to develop his robotic arm further and enter more science fairs. Ultimately, he hopes that his invention can one day enter the prosthetic marketplace and further simplify the lives of amputees.“I’m done with the software,” Mehta told the Daily Pilot. “What I’m trying to do now is work on usability and design. Hopefully someday it can be tested with an amputee and I can work on that process from there.”
As of right now, Mehta’s design has met his initial criteria but is not yet fully functional in an ideal shape. The materials used included, he noted, “the Arduino board, servo motors, the 3d printer, sEMG electrodes, bluetooth module, two prong microphone and the rest were mainly used to assemble the hand.”
In the design phase, Mehta received help from University of California Davis orthopedic professor Gavin Periera, who, he said, “helped me with information on amputation procedures, current prosthetic, etc” as well as from “the staff at the Long Beach public library allowed me to use their 3D printers.”
He has certainly made a promising start. Through the initiative and intelligence of Mehta and other young people like him, the lives of amputees can only improve. Let us know your thoughts on his design in the High School Student Designs 3D Printed Prosthetic forum thread over at 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
Upload your 3D Models and get them printed quickly and efficiently.
You May Also Like
Johns Hopkins University Researchers Develop HyFAM Technology
Two scientists from Johns Hopkins University, Nathan C. Brown and Jochen Mueller, have developed a hybrid manufacturing technology they call HyFam, or Hybrid Formative Additive Manufacturing. Their work on this technology...
3D Printing G-Code Gets an Upgrade: T-Code
Good old G-Code still manages many 3D printers, great and small. Just like the STL, it’s a standard that enables collaboration while also holding the additive manufacturing (AM) industry back....
AM Rewind: The Biggest News and Trends of 2024
After a sluggish 2023, driven by persistent inflation and geopolitical tensions, 2024 has seen some recovery. Economic growth climbed from about 2.8 percent in 2023 to a modest 3.2 percent...
Metal Wire 3D Printer OEM ValCUN Announces Plans for 2025 Expansion
ValCUN, a Belgian original equipment manufacturer (OEM) of wire-based metal additive manufacturing (AM) hardware, has announced that the company has entered the next phase of its growth trajectory, making key...