Additive Manufacturing Strategies

High School Student 3D Prints Voice-Controlled Robotic Arm

ST Medical Devices

Share this Article

Photo by Don Leach, Daily Pilot

[Photo by Don Leach, Daily Pilot]

Irvine High School student Nilay Mehta knew that he wanted to work with prosthetics when he started his science fair project. When he began researching the field, he was struck by how costly prosthetic limbs are, so he set out to create a high-functioning limb for as little cost as possible.

Using a combination of motors and 3D printed parts, he was able to create a robotic, voice-operated arm for a cost of about $260. Many high-end prosthetic arms can cost upwards of $35,000. Cheaper options are available, but with lower cost comes lower quality. Some have little function other than opening and closing the hand. Using a combination of voice control and electromyography, Mehta’s prosthetic hand can grasp, pinch, point, and perform other precise tasks the way a real hand would. It also comes a step closer to simulating the way a natural limb is controlled. Rather than the brain sending a command to the arm to move, the user speaks a command into a small microphone attached to the arm.Jpvw8lm

“You can say ‘spoon’ and the hand will make a shape that will be able to hold a spoon,” Mehta said.

Another factor the 17-year-old considered was upgradability. Children with prosthetics face a challenge that adult amputees do not. Prosthetics can be outgrown just as clothing can, and, as Mehta pointed out, many children need to change their prosthetics every six to eight months. By using inexpensive 3D printed parts, the robotic arm can be resized for a minimal cost.

In February of this year, Mehta entered his robotic arm into the Irvine Public School District science fair, where he won first place. He then went on to win four first-place awards in the Orange County Science and Engineering Fair, and was subsequently chosen to enter the 2015 Intel International Science and Engineering Fair in May. There, his project took third place in the biomedical and health sciences category. He also took a third place award in the California State Science Fair; you can see his project abstract here.

nilay mehta

Nilay Mehta at the Orange County Science and Engineering Fair [Photo: OCScholar]

Now that the prototype has shown so much potential, Mehta plans to develop his robotic arm further and enter more science fairs. Ultimately, he hopes that his invention can one day enter the prosthetic marketplace and further simplify the lives of amputees.

“I’m done with the software,” Mehta told the Daily Pilot. “What I’m trying to do now is work on usability and design. Hopefully someday it can be tested with an amputee and I can work on that process from there.”

As of right now, Mehta’s design has met his initial criteria but is not yet fully functional in an ideal shape. The materials used included, he noted, “the Arduino board, servo motors, the 3d printer, sEMG electrodes, bluetooth module, two prong microphone and the rest were mainly used to assemble the hand.”

In the design phase, Mehta received help from University of California Davis orthopedic professor Gavin Periera, who, he said, “helped me with information on amputation procedures, current prosthetic, etc” as well as from “the staff at the Long Beach public library allowed me to use their 3D printers.”

He has certainly made a promising start. Through the initiative and intelligence of Mehta and other young people like him, the lives of amputees can only improve. Let us know your thoughts on his design in the High School Student Designs 3D Printed Prosthetic forum thread over at 3DPB.com.

Share this Article


Recent News

New Self-Healing Plastic for 3D Printing Epitomizes Plastic Conundrum

3D Printing Drone Swarms, Pt 11: AI-Powered Boats



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Nuclear Reactor 3D Printing Method Licensed from ORNL

The U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) has been making significant progress in 3D printing parts for use in one of the most volatile and dangerous environments:...

3D Printing Drone Swarms, Part 7: Ground & Sea Logistics

As we discuss in our ongoing 3D Printing Drone Swarms series, additive manufacturing (AM) will play an increasing role in the production of all manner of semi-sentient robots. This has...

3D Printed Oil Tanker Parts Approved after 6 Months of Evaluation Use

The oil and gas markets, along with maritime, are less exploited sectors for the additive manufacturing (AM) industry. However, progress is being made in this regard, with a group of...

The Calm Before the Swarm: Notre Dame Researcher 3D Prints Swarm of Robot Insects

The spread of blueprints for DIY gun manufacture has been one of the most infamous developments in 3D printing’s recent history. But this is, of course, far from the only...


Shop

View our broad assortment of in house and third party products.