Magic of Magnets: You Can Now 3D Print Your Own Anti-Gravitator to Amaze Your Friends

Share this Article

levitateani3D printing is a technology that can be quite amazing and fun to watch. In fact, my lineup of 3D printers have become somewhat of a pastime when it comes to having friends and family over my house. It has replaced my air hockey table, and my television set as the attention grabber within my home. This is especially true when I have something interesting being printed as my friends and family come for a visit.

Equally impressive, however, is the ever growing list of unique designs and functional objects that can be printed on these futuristic machines. At 3DPrint.com we tend to cover a lot of these on a daily basis, but few compare to a device which a German man named Stefan Kneip has come up with. Kneip, who loves to indulge in physics, originally came up with his idea after seeing a design for an anti-gravitator, created by Andreas Titze. He enjoyed the idea of the design so much, that he set out to 3D print his very own anti-gravitational device.

levitate5

“Of course it is not possible to disable the [forces of gravity],” Kneip explains. “The principle of the Anti-Gravitator is to compensate the gravity by a magnetic field generated in a copper coil. Referred to as Earnshaw´s Theorem (Samual Earnshaw, 1805-1888), it is not possible to get a stable magnetic levitation with permanent magnets. In this experiment the magnetic attraction force, generated by the electric coil, is controlled by a hall magnetic field sensor. If the floating magnet lifts up and approaches the sensor, the current through the coil will be reduced, leading to a lower magnetic force and a drop down of the sphere. If the floating magnets descents, the hall sensor indicates a lower magnetic field to the OPAMP resulting in a higher coil current and a stronger magnetic force.”

levitate1This process takes place approximately 4 million times a second, resulting in a levitating metal object.

The device consists of a dozen 3D printed parts, all of which must be assembled, along with a laundry list of other parts, which include:

  • (1) Hall sensor (A1302 or similar)
  • (1) Nd-ball magnet (15 – 30 mm diameter)
  • (1) Hexagon socket head cap screw M6x40mm as an iron core
  • (1) M6 nut & washer
  • 100g Cu wire Ø 0.28 mm
  • (1) Electronic board
  • (1) Power supply 15 V, 800 mA
  • (2) M4 Hexagon socket button head screws
  • (4) Self-tapping screws (approx. 2,5 mm)

Kneip warns that the use of Neodymium magnets can be a bit dangerous and asks that you be cautious when handling them, as they are very powerful and can break into many sharp pieces. The complete instructions, as well as the STL files for the 3D printed parts can be found and downloaded for free on Thingiverse, where he also issues some tips on getting your Anti-Gravitator to work correctly.

“Turn the precision potentiometer to the right end,” he explains. “Hold the magnet sphere below the coil (approx. 15 mm), turn-on the power supply and turn the potentiometer screw slowly to the other end (as you can see in the video). If you reach the resonance point, the sphere will begin to levitate. If you turn further it will bounce to the coil cylinder above. Reduce the potentiometer than a small portion to get the system stable. If you are not successful [in getting] a stable levitation try at least to change the connections of the coil to the electronic board (exchanging the poles of the electromagnet).”

levitate6

What do you think about this unique 3D printed device? Will you be attempting to make your own?  Can you think of any other 3D printed gizmos which could utilize neodymium magnets   Discuss in the 3D Printed Anti-Gravitator forum thread on 3DPB.cm. Check out the video of the device in action below, where Kneip shows it working to levitate a metal cube, a ball, and even a tiny figurine.

Share this Article


Recent News

Optical Metrology: The key to quality control in additive manufacturing

A New 3D Printing Method: Tethered Pyro-Electrospinning for 3D Printed Microstructures



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Microstructures for New Drug Delivery Systems with SPHRINT

In the recently published, ‘SPHRINT – Printing Drug Delivery Microspheres from Polymeric Melts,’ authors Tal Shpigel, Almog Uziel, and Dan Y. Lewitus explore better ways to offer sustained release pharmaceuticals...

3D Printing Polymeric Foam with Better Performance & Longevity for Industrial Applications

In the recently published ‘Age-aware constitutive materials model for a 3D printed polymeric foam,’ authors A. Maiti, W. Small, J.P. Lewicki, S.C. Chinn, T.S. Wilson, and A.P. Saab explore the...

Successes In 3D Printing Spinal Implants in Two Complex Cases

In the recently published ‘Challenges in the design and regulatory approval of 3D printed surgical implants: a two-case series,’ authors Koen Willemsen, Razmara Nizak, Herke Jan Noordmans, René M Castelein,...

Modular, Digital Construction System for 3D Printing Lightweight Reinforced Concrete Spatial Structures

Spatial structure systems, like lattices, are efficient load-bearing structures that are easy to adapt geometrically and well-suited for column-free, long-spanning constructions, such as hangars and terminals, and in creating free-form...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!