UK’s CPI & The University of Kent Team Up to 3D Print a Wearable Tracking Bracelet

IMTS

Share this Article

3dp_cpi_logo3D printing has unquestionably changed the way that all of the products that we use on a daily basis are designed and manufactured. From product development using rapid prototyping to small scale production and manufacturing, more industries than ever are using 3D printing to make better, and cheaper, consumer goods. One of the end goals of the 3D printing industry has always been the ability to print entire, market-ready products that incorporate ready to use electronics using multiple material 3D printers. While our current capabilities make that advancement still a ways off yet, several leading universities and high tech companies are paving the way.

Thanks to a collaboration between the UK’s Centre for Process Innovation (CPI) and the University of Kent we have taken one step closer to 3D printed electronics. The duo 3D printed a bracelet that combines the latest 3D printing processes with advanced antenna and RFID technology. The University of Kent took charge of the design and 3D Printing of the wrist band, while the manufacturing of the antenna component was 3D printed at CPI’s National Centre for Printable Electronics.3dp_cpi_aerosol_metal

The University of Kent is considered one of the leading centers of development of antenna and RFID technology while CPI is at the forefront of advanced electronics 3D printing technology. The goal of the collaboration was to create wearable products capable of being 3D printed quickly with little to no assembly that were capable of acting as tracking or identification devices. The design would allow for use-specific customization, from patient bracelets to be used in hospital settings that connect to local wi-fi hotspots and then to integrated equipment identification tags. With over 10 years of experience developing antenna and radio frequency technology the University of Kent’s Lecturer in Electronic Systems Dr Benito Sanz headed up the effort on the university’s side.

3dp_cpi_u_of_k_logo“The demonstration of a working prototype represents a significant achievement in the commercialisation of wearable electronics, in this case the integration between a 3D printed bracelet and printed antenna technology. Printable electronics provides a number of opportunities for wireless sensors such as the ability to manufacture antennas that are both conformable and extremely cost effective to produce at mass scale. Moving forward, further developments will focus on the optimisation of the process and the scale up of the technology from prototype scale to pilot production scale,” said Sanz.

CPI is a technology innovation centre that aids high tech startups to develop, prove, prototype and scale up the next generation of electronic products and manufacturing and fabrication processes. Their facilities combine science and engineering with state of the art research and development technologies to help their clients understand how their products and technology will perform when manufactured at high volumes, potentially accelerating their production schedule and reducing costs.

The antenna was printed using an aerosol jet 3D printing technique using a type of silver ink that can be formed into geometries that cannot be reproduced with any other manufacturing method. These inks can be printed onto virtually any surface in an almost unlimited number of configurations. Not only will this lower the cost and increase the functionality of wearable electronics that traditionally manufactured, rigid circuit boards can’t provide, but they can be produced quickly for high volume manufacturing.

The ability to mold electronic components like circuits or antennas will open up an entire host of new design and geometry options for personal electronic devices and wearable technology. It will also allow for the manufacturing of stronger, lighter, smaller and more comfortable wearables that will wirelessly connect to the internet. These devices will be smarter and more interactive while providing a user friendly interface and fit. For instance, perhaps a consumer electronic product like a fully functional smartwatch that won’t cost five to six hundred dollars, will run on less power and can be customized into user-specific shapes and styles.

Share this Article


Recent News

EOS & AMCM Join Forces with University of Wolverhampton to Establish UK Centre of Excellence for Additive Manufacturing

3D Printing News Unpeeled: Better Elastomers, Mailbox Keys and Origami Networks



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Unpeeled: New Arkema Material for HP, Saddle and Macro MEMS

A new Arkema material for MJF is said to reduce costs per part by up to 25% and have an 85% reusability ratio. HP 3D HR PA 12 S has been...

3D Printing News Briefs, January 20, 2024: FDM, LPBF, Underwater 3D Printer, Racing, & More

We’re starting off with a process certification in today’s 3D Printing News Briefs, and then moving on to research about solute trapping, laser powder bed fusion, and then moving on...

3D Printing Webinar and Event Roundup: December 3, 2023

We’ve got plenty of events and webinars coming up for you this week! Quickparts is having a Manufacturing Roadshow, America Makes is holding a Member Town Hall, Stratafest makes two...

Formnext 2023 Day Three: Slam Dunk

I’m high—high on trade show. I’ve met numerous new faces and reconnected with old friends, creating an absolutely wonderful atmosphere. The excitement is palpable over several emerging developments. The high...