South Korean Researchers Using Oxygen Diffusion Technique to Build 3D Printed Micropatterns

Share this Article

Image 115Diffusion describes the fact that molecules, vibrating with random motion in a gas or liquid, move toward a state of equilibrium where those molecular species in a mixture are uniformly dispersed until the concentration of any one species becomes the same throughout the medium. It’s a sort of Fick’s second law issue, and Fick’s laws have been used to model transport processes in foods, neurons, biopolymers, pharmaceuticals, porous soils, and nuclear materials.

Professor Shin-Hyun Kim

Professor Shin-Hyun Kim

It’s an understanding of that law that has led Professor Shin-Hyun Kim and a team of researchers working at the Department of Chemical and Biomolecular Engineering within the Korea Advanced Institute of Science and Technology (KAIST) to develop a novel, photolithographic technology that uses oxygen diffusion to control the creation of functional, 3D micropattern shapes.

Photolithography is an optical process for transferring micropatterns to various substrates by exposing specific regions of what’s called the “photoresist” layer to an ultraviolet light source. Industries that require such micropatterns, such as semiconductor manufacture, relied on photomasks.

These photomasks protect specific regions of the substrate from the input UV light, and locations covered by the photomask remain intact as areas exposed to the UV light are washed away. Until now, this technology was limited to fabricating two-dimensional, disc-shaped designs. The problem with creating any other types of shapes occurs because the boundaries between the exposed and covered regions are in a parallel arrangement with the direction of the UV light.

What Kim’s team discovered is a two-fold observation: areas exposed to UV light lowered the concentration of oxygen in that area, and manipulation of the diffusion speed and direction allowed control of the formation, shape, and size of the polymers.

This observation led them to a new photolithographic technology which enabled the production of micropatterns–with three-dimensional structures–in various shapes and sizes.

Image 111Kim says that as oxygen was considered an inhibitor during photopolymerization, photoresist under UV light creates radicals which initialize a chemical reaction. He and his team eliminated these radicals by introducing the presence of oxygen to prevent the reaction.

According to Kim, he and his team exploited the presence of oxygen as they found that while the region affected by the UV light lowered oxygen concentration, the concentration in the untouched regions remained unchanged. When the speed of the oxygen flow is slow, the diffusion occurs in parallel with the direction of the UV light. When it’s sped up, the diffusion process develops horizontally and outward from the area affected by the UV light.

Kim and his team proved this phenomenon both empirically and theoretically, and by injecting an external oxygen source, the team found they could manipulate diffusion strength and direction to control the shape and size of the polymers within.

By using these polymerization inhibitors, they found it was possible to create complex, three-dimensional micropatterns.

“While 3D printing is considered an innovative manufacturing technology, it cannot be used for mass-production of microscopic products,” says Professor Kim. “The new photolithographic technology will have a broad impact on both the academia and industry especially because existing, conventional photolithographic equipment can be used for the development of more complex micropatterns.”

Kim says the research was dedicated to the late Professor Seung-Man Yang of the Department of Chemical and Biomolecular Engineering at KAIST. Professor Yang was considered one of the great scholars in Korea within the field of hydrodynamics and colloids.

Can this new photopolymerization process be considered 3D printing? Let us know your thoughts in the Oxygen Diffusion Technique forum thread on 3DPB.com.

Image 113

Share this Article


Recent News

UK Heart Patient Undergoes Rare Surgery for 3D Printed Titanium Sternum

Interview with Edi Weigh of 3D Printing Service FacFox



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Sponsored

The Do’s and Don’ts of Additive Manufacturing

The best-use cases for 3D printing aren’t always obvious. When designing an object for additive manufacturing, it’s important to keep the limits and benefits of the process in mind. These...

Sponsored

5 Professional Finishing Options for FDM Parts

Despite the advances of other technologies, Fused Deposition Modeling (FDM) remains the go-to 3D printing process for prototypes and simple plastic parts. It’s fast, it’s cheap, and there are thousands...

Sponsored

The Advantages of 3D Printing

In recent years, 3D printers have taken the manufacturing industry by storm. From automobiles to computer parts, products made by 3D printers have undoubtedly played a big role in the...

3D Printing Being Combined with Soldering to Create High-Performance Zeolites

Researchers in China are exploring the use of minerals called zeolites, hoping to harness ‘desirable configurations’ via 3D printing and soldering, which is further outlined in ‘Fabricating Mechanically Robust Binder-Free...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!