AMS 2025

Tiny Chip From Caltech Could Revolutionize 3D Imaging

AM Research Military

Share this Article

getImage.xqyThree-dimensional imaging has a number of applications in bio-medicine, nano-particle characterization, security, robotics and gesture recognition. In the past, such systems have been either single pixel detectors or bench-top devices with simple detector arrays.

Now a new 3D imaging chip, developed by researchers at the California Institute of Technology, has been made small enough to fit inside a smartphone and will soon be ready to let consumers take a 3D image of an object with their phone, for later replication with a 3D printer.  The data used to construct 3D prints requires the creation of a digital model with height, width and depth information, and until now, a 3D scan of an object was required to create that model.

Professor Ali Hajimiri

Professor Ali Hajimiri

According to Ali Hajimiri, the Thomas G. Myers Professor of Electrical Engineering in the Division of Engineering and Applied Science at Caltech, the technology is based on an inexpensive, tiny and highly accurate device known as a nanophotonic coherent imager, or NCI.

Making use of an inexpensive silicon chip less than a square millimeter across, theses NCIs provide superb depth measurement accuracy, and the silicon photonics are an ideal platform for coherent 3D imaging and projection systems with high resolution and pixel counts.

“Each pixel on the chip is an independent interferometer – an instrument that uses the interference of light waves to make precise measurements – which detects the phase and frequency of the signal in addition to the intensity,” says Hajimiri of the chips.

The new chip uses LIDAR technology which targets an object illuminated with scanning laser beams. As light that reflects off of the object, it’s analyzed based on the wavelength of the laser light used and the LIDAR system is used to gather information about the size and its distance from the laser of an object to create an image of its surroundings.

“By having an array of tiny LIDARs on our coherent imager, we can simultaneously image different parts of an object or a scene without the need for any mechanical movements within the imager,” Hajimiri says. “By coupling, confining, and processing the reflected light in small pipes on a silicon chip, we were able to scale each LIDAR element down to just a couple of hundred microns in size – small enough that we can form an array of 16 of these coherent detectors on an active area of 300 microns by 300 microns.”

The IR wavelengths can be processed efficiently by integrated silicon-on-insulator (SOI) nanophotonic platforms, and the researchers say they have the potential to ultimately be integrated with silicon electronics to create NCIs with a large number of pixels in a small area – and at a very low cost.

Hajimiri and his colleagues have used the device to scan and build a 3D image of the “hills and valleys” impressed on the face of a penny down to micron-level resolution from just half a meter away.

Hajimiri says the current array of 16 pixels will soon be scaled up to hundreds of thousands of pixels and result in vast arrays of LIDARs.

“The small size and high quality of this new chip-based imager will result in significant cost reductions, which will enable thousands new of uses for such systems by incorporating them into personal devices such as smartphones,” he says.

The study, entitled “Nanophotonic Coherent Imager,” was authored by Hajimiri, Firooz Aflatouni, Behrooz Abiri and Angad Rekhi, and it was published in the February issue of Optics Express.

Can you imagine any applications for these tiny, LIDAR-driven chips? Let us know in the Tiny Chip From Caltech forum thread on 3DPB.com.

caltech-3d-chip nanophotonic coherent imager 2 nanophotonic coherent imager

 

Share this Article


Recent News

3D Printing News Briefs, December 14, 2024: Multimaterial SLA, Fusion Energy, & More

Farsoon Cuts Ribbon on 140,000-Square-Meter 3D Printing Facility



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

LEAM’s Clever Add-On Solution Is Making Large-Scale 3D Printing Work Smarter, Not Harder

Instead of creating new 3D printers, German startup LEAM Technologies upgrades existing large-format machines. Its proprietary Directed Energy Material Extrusion (DEMEX) system uses advanced light-emitting diodes (LED)-based technology to solve...

3D Printing Webinar and Event Roundup: December 8, 2024

This week, we’ve got a number of webinars, on topics from 3D printing software and medical applications to printed electronics, PVC for industrial 3D printing, and more. There are also...

Featured

Printing Money Episode 24: Q3 2024 Earnings Review with Troy Jensen, Cantor Fitzgerald

Welcome to Printing Money Episode 24. Troy Jensen, Managing Director of Cantor Fitzgerald, joins Danny Piper, Managing Partner at NewCap Partners, once again as it is time to review the...

John Kawola on BMF’s Formnext Highlights and What’s Next

Boston Micro Fabrication (BMF) has continued to grow steadily since my last visit to its Boston headquarters. The company, known for its ultra-precise 3D printing technology, showcased new product launches,...