Additive Manufacturing Strategies

Japanese Breakthrough & 3D Printing Could Make Wireless Transmission of Solar Energy a Reality

ST Medical Devices

Share this Article

SpiderFab_MOSTScientists at the Japan Aerospace Exploration Agency (JAXA) say they were able to transmit 1.8 kilowatts of solar-generated power using microwaves sent to a receiver more than 180 feet from the power source, and in conjunction with 3D printing, the technology might one day be used to drive vehicles or “factories” in space.

jaxa-space-laserDuring the late 1960s, Peter Glaser first described the idea in scientific journals, and Dr. David Criswell now says solar power stations could be built on the moon using 3D printing techniques to rapidly construct photovoltaic panels on the lunar surface.

The team at JAXA responsible for the successful wireless transmission of energy say that while the distances and power involved were small, the technology might easily be used to collect the abundant solar energy available in outer space. Yasuyuki Fukumuro and solar power systems researchers at the agency say the ultimate goal is to use a microwave transmitting satellite to focus energy on a radar dish of up to 1.9 miles in diameter, and they believe it can be done from an altitude of up to 22,000 miles.

“This was the first time anyone has managed to send a high output of nearly two kilowatts of electric power via microwaves to a small target, using a delicate directivity control device,” Fukumuro says.

For his part, Criswell is not surprised at the result.

“We think of beaming power…as exotic, but it has been done for at least 15 years,” says Criswell. “Power beaming is like using a big radar.”

And taking the idea one step further, Criswell says it is possible to convert common materials already on the lunar surface into engineering-grade materials like bauxite into aluminum. He says during the 1970s and 1980s, analysis of the rocks collected during the six Apollo moon landings showed those specimens contained silicon, magnesium, aluminum, and titanium, and those are the basic materials need to build functional solar cells.

“We are not talking about taking a GM factory to the moon,” says Criswell. “We are talking about machinery more on the scale of road-building equipment—roughly ten to 20 times the size of the lunar rover. The machines would move dirt around, extract metal from the soil, and produce and lay out the thin glass solar cells.”

Dr. Fernando Araujo de Castro, a principal research scientist at the National Physical Laboratory in the UK, has already done research on solar photovoltaic and organic electronics, and his work on materials and product development in the field relies heavily on 3D printing.

31eTdNDRj1FeUVRNstjN5zl72eJkfbmt4t8yenImKBVvK0kTmF0xjctABnaLJIm9The cells Castro has developed, called organic photovoltaics, are built with small organic molecules which function as semiconductors when exposed to solar radiation. Those molecules can be dissolved into a solution, and then 3D printed in a variety of shapes, sizes, and colors. They may not be as efficient, but organic photovoltaics can produce approximately 50 percent of the voltage of their silicon-based counterparts, and Castro says he expects major improvement to that output very soon.

The 3D printed solar cells, made from thin and flexible material like cloth, are printed in sheets and they’re very lightweight. Auto manufactures are already testing the materials as rooftop additions to vehicles to charge batteries and power electrical systems.

Projects like the Trusselator from Tethers Unlimited, Inc. are focused on the idea that it will be possible to fabricate space system components in-orbit rather than building them on the ground. The CEO and Chief Scientist of TUI, Rob Hoyt, says his company’s analysis shows that it’s possible to gain “orders of magnitude improvement in the stored volume and mass of space systems” using 3D printing and robotic construction of components in space. TUI’s Trusselator, part of what the company calls SpiderFab architecture, would use 3D printing techniques and robotic assembly to fabricate large truss structures which are essentially football-field sized antennas. In the process, 3D printers would build carbon fiber truss structures to act as a frame for a membrane of thin film photovoltaic material.

How far do you think we are from seeing solar power transmitted wirelessly using 3D printing? Let us know in the Wireless 3D Printed Solar Energy forum thread on 3DPB.com.

Share this Article


Recent News

FDM 3D Printing Support Removal Times Cut in Half with VORSA 500

3D Printing Drone Swarms, Part 12: 3D Printing Missiles



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

ICAM 2021: Keynotes on 3D Printing in Healthcare & Aerospace

At last month’s International Conference on Additive Manufacturing (ICAM) 2021 in Anaheim, California, hosted by ASTM International’s Additive Manufacturing Center of Excellence (AMCOE), a wide variety of topics were covered,...

Featured

3D Printing Unicorns: Gelato Gets $240M in Funding, Expands into 3D Printing

On-demand printing platform Gelato, based in Oslo, Norway, achieved the coveted unicorn status after a new funding round. On August 16, 2021, the company announced it had raised $240 million...

Featured

US Army and Raytheon to Use 3D Systems Metal 3D Printing to Heat-Optimize Munitions

3D Systems (NYSE: DDD) has been chosen by defense contractor Raytheon and the U.S. Army’s central laboratory to help with a design optimization project. To do that, the 3D Systems’...

Raytheon Receives Funding for Aerospace 3D Printing of Optical Components

This spring, Ohio-based America Makes, the leading collaborative partner in additive technology research, discovery, and innovation for the US, announced its latest Project Call for AXIOM, or  Additive for eXtreme Improvement...


Shop

View our broad assortment of in house and third party products.