Rolls-Royce to Get Largest-Ever 3D Printed Component Off the Ground, Flight-Testing Engine Later This Year
Large-scale 3D printed components are now getting ever larger in scale — and in terms of ambition. Later this year, Rolls-Royce — that multi-faceted company perhaps most widely known for producing fine luxury vehicles but also a major manufacturer of engines for such applications as the huge Airbus aircraft — intends to debut the world’s largest-ever 3D printed object when it flight-tests a Trent XWB-97 engine incorporating this component.
The Airbus A350-1000, still in development itself, utilizes the XWB-97 (which provides 97,000 pounds of thrust) as its sole engine. Several successful ground-tests have been carried out, but a 3D printed component of that magnitude has not yet been flight-tested. The flight-test will be proof in action of additive manufacturing’s place in engine manufacturing, at the very least for prototyping.
Following the anticipated success of the component’s performance in the flight-test later this year, the 3D printed piece will not appear as-is in the production-quality XWB-97. However, the potential is there for it to ultimately appear beyond the prototyping and experimental phases.
The 3D printed nickel component represents an unprecedented size, with a 1.5m diameter and 0.5m-thick front bearing housing that contains 48 airfoils. Rolls-Royce notes that the use of additive manufacturing in this application could cut “like-for-like manufacturing lead time” by 30% from traditional techniques.
“[Additive manufacturing] is ideal for prototyping. Shortening the manufacturing time by almost a third gives us more time to design, which is always a benefit,” said Chief Engineer for Future Programmes and Technology Alan Newby. “We are also able to produce designs that we wouldn’t otherwise be able to do.”
Rolls-Royce has teamed up with experts from the University of Sheffield in the UK and Arcam of Sweden for 3D printing work. The company has, for over half-a-decade now, been using 3D printing technologies for component repair. Their preferred technique utilizes metal powder, which is melted via an electron beam and layered in ultra-thin extrusions to achieve the complex geometries required for high-quality, high-performance engine components.
Looking forward to the future of 3D printing in critical aerospace applications, says Newby, “we are using this knowledge now to build up to bigger components.”
As for the “when,” though? That’s still up for debate. While the initial flight-test to see how a 3D printed major engine component holds up at altitude has been announced for 2015, otherwise Rolls-Royce has not provided a timeline for further developments. Likely this will hinge on the performance seen in that test, which will indicate requisite levels of further development.
“We don’t want to put a date on it,” says Newby. “We have a lot of work to do on scaleability before making a commitment to production.”
3D printing will, especially if used for end-use components in flight-ready engines, add greatly to Rolls-Royce’s initiative toward lightweighting. The Trent XWB-97 utilizes light-weight components throughout, and the structure of the large 3D printed nickel piece enhances the aerodynamics of the overall engine.
Let us know what you think about Rolls-Royce’s ambitious use of 3D printing in aircraft engines in the Largest 3D Printed Component forum thread over at 3DPB.com. Check out more photos from Rolls-Royce below, including an infographic on these powerful engines.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
You May Also Like
3D People Launches Cloud-Based Digital Inventory Platform to Streamline Manufacturing
UK-based 3D printing specialist 3D People is on a mission to make manufacturing more accessible, without compromising on the quality of the products. That’s why, in addition to its current...
Lithoz 3D Printed Bioceramic Implants Get a Boost from KLS Martin
Bioceramic implants could unleash a revolution. Ceramics that come close to mimicking bone could, if deemed safe and useful, replace a lot of metal and polymer implants. Now, a long...
RAPID 2025: Axtra3D Adds Additive Plus as Reseller, Launches Silicone Material
Axtra3D, the Charlotte-based OEM of additive manufacturing (AM) systems leveraging the company’s proprietary Hybrid PhotoSynthesis (HPS) technology, has announced that Additive Plus, a Los Angeles-based AM service and AM hardware...
Low-cost “Suzy” Polymer Powder 3D Printer is Faster and Cheaper than Past Models
Polish laser powder bed fusion (LPBF) firm Sinterit has released a follow-up to its predecessors, Lisa and Nils, called Suzy, a $19,490 printer equipped with a 30W fiber diode laser....