As we’ve mentioned only yesterday, the medical applications for 3D printing continue to expand rapidly. In fact, in the next 5 years alone, the number of printers will double and the amount of material used for printing within the healthcare space will grow 7-fold. All the while, 3D bioprinting should be just about to hit its stride around 2020 according to SmarTech.
Also according to SmarTech, one of the key geographic areas leading to this growth will be the Asian Pacific region. Here, promising new companies are spouting up and heavy investments are being made in both research and development, while a general urge to keep up with western nations, drives forward innovation.
One such example of all of this, is an agreement signed yesterday by the Lung Center of the Philippines (LCP), engineers from the Technological Institute of the Philippines (TIP), representatives from the Genomic Institute of Asia (GINA) and Pharma Canada Ltd. As part of this research agreement, the teams will work to develop the technology necessary to 3D print artificial tracheae (windpipes).
We’ve already seen several instances of 3D printed windpipes being produced. In fact, just last month doctors at the Feinstein Institute for Medical Research used a sub-$3000 MakerBot Replicator 3D printer to do just this.
The printer, which researchers in the Philippines are utilizing, will use a bio-ink to print out the scaffolding of the windpipe. Then researchers will implant the scaffold along with a patient’s own stem cells, allowing the scaffold to transform eventually into a biologically compatible transplantable human body part. Because a patient’s own stem cells are being used, the risk for rejection is significantly cut, and expensive drugs are not required for the transplant patient.
“Our technology is cutting-edge,” said Dr. Jose Luis Danguilan, Executive Director of the LCP. “If we are successful in its clinical applications, we may be at par with the advanced nations in this new field.”
The researchers have started with the trachea because of its simplicity and tubular shape, which makes printing it much easier than other biological features. They do, however, hope to increase the scope of this research to include other body parts and organs in the future. Currently the teams hopes to have the 3D printed tracheae ready for use within patients in about 3-4 years, perhaps saving lives and dramatically reducing the cost and wait times for transplants.
Let’s hear your thoughts on this research being done in the Philippines. Discuss in the 3D Printed Trachea forum thread on 3DPB.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Japan Ground Self-Defense Force Buys SPEE3D Metal 3D Printers
SPEE3D, the Australian original equipment manufacturer (OEM) of cold spray additive manufacturing (CSAM) platforms, has been awarded a contract by the Japanese Ministry of Defense to purchase both WarpSPEE3D and...
Toyota Taps SOLIZE to 3D Print Functional Parts for Lexus
Recently, Japanese reseller and 3D printing service SOLIZE has achieved notable success. In 2021, the company began manufacturing 3D printed components for Nissan’s NISMO brand, utilizing HP printers. Now, SOLIZE...
3DPOD Episode 168: Reselling 3D Printers in Japan, Korea and the USA with Douglas Krone, Brule and Dynamism
Douglas Krone co-founded Dynamism, a reseller specializing in a range of 3D printers, from desktop to industrial models, for the U.S. market. This successful enterprise has become a leader in...
Japan’s Largest Fishing Company to Fast-Track Lab-Grown Fish via Seafood 3D Printing Firm Investment
Maruha Nichiro (TYO: 1333), Japan’s largest fishing company, has announced a strategic investment and collaborative partnership with Singapore-based Umami Bioworks (formerly known as Umami Meats) to develop and commercialize cell-cultivated...