Woman Wearing Surgical Mask While Strolling on the Street in Donora

Woman Wearing Surgical Mask While Strolling on the Street in Donora

During October 1948, a cool snap descended on the small mill town of Donora, Pennsylvania.

The people in Donora were dependent on the steel and zinc factories that surrounded their town, and those plants regularly released a mix of nitrogen oxide, sulfur dioxide, and fluoride gas as a result of the work that went on inside. During normal weather conditions, the fumes were whisked away by prevailing winds.

But that October, the sudden influx of cold air created what’s known as an inversion, and that event trapped the toxic mix of gases at the bottom of the valley where the town sat. As the air turned progressively darker, the factories kept running, and at the end of just five days, 20 people were dead. Fifty more died over the course of the next month, and it was later discovered that all told, 6,000 had suffered permanent heart and lung damage.

It was the single most deadly air pollution disaster in American history.

During the disaster, patient after patient spent time hooked up to all the mechanical ventilators available in the small town of 13,000, and the local hospitals were pushed to the brink of their capability.

Ventilators are machines that it easier for patients to breathe, assisting breathing through a mask or mouthpiece by delivering oxygen and eliminating carbon dioxide, and in Donora, respiratory failure — or a low level of oxygen in the blood — became endemic as the levels of pollution rose.

While mechanical ventilators don’t actually repair diseases, they can keep a patient alive while the condition causing the difficulty is assessed.

Now a team of researchers have used 3D design, modeling, and printing to create a ‘manifold’ which can be attached to multiple respiration masks from a single ventilator machine — which may one day prove critical in dealing with disaster surges like the Donora incident.htmlimages_2-1750025x_644fbb6c-d9e9-4f8a-95c1-4ee26a91dc56

The manifold allows up to four masks to be connected to a single ventilator source, and the researchers used 3D printing via a Fused Filament Deposition (FDM) machine to build their prototype of a four-port ventilator manifold.

The team say by sharing the standard file format they used for the object, it can be made globally available through the internet, 3D printed anywhere and anytime at less than $2 per unit, and used to save patients in areas with limited healthcare resources.Image 6

The developers used the CAD program TrueSpace to create their four-port Ventilator-Respirator Manifold, and the design was checked for surface integrity and water tightness in Netfabb before being printed in ABS. Printing time using an Up!3D Afinia printer was just about five hours, and by material weight used (61.4 grams) costs are estimated to stay under two dollars per manifold.

The manifold was created and built by Richard Siderits of the Robert Wood Johnson Medical School and Gregory Neyman of the Robert Wood Johnson University Hospital.

Do you know of other instances where researchers are using 3D printing to create modifications for medical devices? Let us know in the 3D Printed Ventilator-Respirator Manifold forum thread on 3DPB.com.manifold

 

Facebook Comments




Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
  • This field is for validation purposes and should be left unchanged.

3DPRINT.COM HIGHLIGHTS & RESOURCES

Tagged with:


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!

Newsletter Signup Form

Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
  • This field is for validation purposes and should be left unchanged.
Facebook Comments