Additive Manufacturers Build NEMO Vehicle to Explore Deadly Underwater Caves

Share this Article

Cave diving is, per attempt, the single most dangerous sport on Earth. The men and women who take it on are regularly faced with cave-ins, blackouts, and panic-inducing conditions. These divers, experts in the field, take trips down into what they call “blue holes.” From the surface, trips may begin at a small pond, but as the divers head down, the ponds can open into a series of maze-like tentacles which reach out in all directions.

And if you think that sounds relatively tame, consider this; during an average year, 20 divers never come back from the trip down.

IF

Photo courtesy of National Geographic.

Corey Jaskolski has been working on a project which aims to give those daring explorers an additional tool they can use in their pursuit of their passion.

Jaskolski is the President of Hydro Technologies, and he also serves as a National Geographic Innovation Fellow. His latest project is the development of a remotely operated vehicle to help explore underwater caves. He and his team have leaned heavily on 3D printing technology to make it happen.

The CSU student team who helped develop NEMO.

The CSU student team who helped develop NEMO.

Working with engineering students from Colorado State University and additive manufacturing experts from Solid Concepts, the group built an Underwater Remotely Operated Vehicle (UROV). The NEMO (Nautical Exploratory Modular Observer) was manufactured using Fused Deposition Modeling and Selective Laser Sintering.

Previous versions of UROVs needed to be powered from the surface and required 400-foot-long cables, each a half an inch in diameter and made of heavy, solid steel to reach down into the blue depths. The NEMO carries its power supply on board, and though still tethered, needs only a thin, fiber-optic cable of less than 4 lbs in total weight to connect to the surface.

“There are great archeological teams unable to afford current UROVs,” Jaskolski says. “They can barely afford to travel out to these places for exploration. If we can make UROVs readily available, cheap, portable and easily replicable – and get them in the hands of the right people – then we will be able to make amazing discoveries in our lifetime.”

3d printed NEMO-Assembled

NEMO

Jaskolski and his team knew they’d have to find a better way to build their dream UROV, so they turned to Solid Concepts.

“If everything had to be made by machining or molding without freedom to design one-off or two-offs, this would not have been possible,” he says. “It would have turned into months of machining and hundreds of thousands of dollars.”

Using 3D printing technology, the NEMO took just a few weeks to design, 3D print and ready for testing.

The clear nose cones were made with SLA-printed “master patterns” from which a silicone mold was made to cast them from urethane. The process meant each thread on the cones could be cast directly, and that eliminated costly and time-consuming machining processes.

3d printed NEMO-castingMichael Hake was the lead engineer on the NEMO team at CSU, and he says the process resulted in an easy-to-assemble package which allows all servos and thrusters to connect directly to the NEMO’s outer shell. That meant fewer total parts and manual assembly steps are involved.

“You can easily remove the shell without losing parts and reassemble when you reach your destination,” Hake says.

And the NEMO is more than a pretty face. It’s built to comfortably withstand depths of more than 60 meters. That means it can head down further than most master SCUBA divers as they’re generally able to dive to 40 meters before discomfort drives them back up.

Hake says analytic testing has indicated that the NEMO might well function down to 190 meters. He adds that the team designed NEMO to be small enough that a pair of hikers can carry it to a given location, and that it could operate for more than 90 minutes without interruption.

Additive manufacturing technologies are paving the way to incredible advances in everything from medicine to aerospace to vehicle design. This underwater exploration sub may well save the lives of master divers bent on exploring the most dangerous “blue holes.” What do you think? Please let us know of any other ways 3D printing and AM are solving problems in various industries here in the Additive Manufacturers Build NEMO Vehicle forum thread on 3DPB.com

Share this Article


Recent News

Improvements to the BioFabrication Facility on the ISS Thanks to Lithoz

Switzerland: in vivo Analysis of Intraoral Scanners for the Dental Arch



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Delft University of Technology & Maaike Roozenburg 3D Print Chinese Porcelain

China is famous for its blue and white porcelain, delicately and artfully produced and painted. Crafted mainly in the southern Chinese city of Jingdezhen and purchased by travelers visiting the...

3D Printing News Briefs: July 11, 2019

We’ve got plenty of new products to talk about in today’s 3D Printing News Briefs, starting with materials from two chemical companies. WACKER announced new grades of of liquid and...

How do 3D Printed Dentures Stack up when Compared to Milled and Injection Molded Dentures?

In a new study, Korean medical researchers have been looking into the differences in quality and accuracy of several different modern ways to make dentures, with a focus on whether...

Additive Manufacturing Strategies Boston 2019 Speaker Roundup

January 29 to 31st Boston will host the Additive Manufacturing Strategies event which will be a chance for you to learn with and from your peers in medical and dental...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!