3D Printed Energy Harvesters Could Make Your Home More Sustainable
Have you ever thought about how much energy we waste during a day? We open doors, turn off lights, and close cabinets—and for what? For it to turn into motion and leave forever? Seems inefficient. But, what if it didn’t have to be that way? Could we harness that energy and use it to power our homes, schools, and businesses? Well, a team of engineers from Texas A&M and UCLA wanted to do just that, and they recently published a paper describing their solution. It’s a new app that helps people with little to no tech experience design and build 3D printed kinetic machines so they too can capture the ambient energy from their homes and power small sensors and devices.

Now, trying to harness kinetic energy from personal environments is nothing new. The idea has been around since at least the invention of the waterwheel. More recent examples have included photovoltaic cells that capture indoor light to make electricity and HVAC systems that power indoor wireless sensors using the airflow inside the ducts. However, both examples above and other attempts have required an in-depth knowledge of engineering and each machine was specialized to the installation location.
The Texas A&M and UCLA team wanted to simplify the process and create kinetic energy harvesting machines that were accessible to the masses, versatile in their application, and adaptive in their utilization. What they came up with was an open source app they call E3D, a tool kit to help create kinetic energy harvesting machines that can be used anywhere and by anyone.
The process is simple and starts with a person wearing their smart watch. Said person goes about their day and does everything they normally would. All of their movements are captured and when the day is done, the data is sent to E3D. Next, the information is parsed via machine learning before the app recommends which activities return high energy. From there, the app will helps users design a kinetic energy machine that fits perfectly to their door, cabinet, or light switch, even going so far as to providing a printable 3D model. The last step is to print the model and install it using the instructions provided through the app.


Sounds great in theory, but the researchers also wanted to know how the “average” person would handle the process in real life. So, they brought in 10 participants with varying levels of experience to test how easy E3D actually was. Each participant using the app successfully made their personal 3D printed kinetic energy harvesting devices and powered small sensors with it. The participants said they came away thinking more about sustainability and how they could implement these devices into their own lives.
The team would love to explore various improvements in the future like making the machines more durable, and possibly adapting the app to capture energy from body movements as well.
This research is still new, but the idea of making more sustainable houses with the help of 3D printing sounds great. I am already thinking of ways restaurants could incorporate E3D into their swinging doors to power lights, or installing one of these devices on a bathroom tap to monitor who actually washes their hands before they leave. This research could explore a variety of paths, but there’s no doubt in my mind that, as the need to be more sustainable increases, so will the sophistications of these machines. I am excited to see the next generation of these devices.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
Print Services
You May Also Like
Deployable Construction 3D Printer in the Works from Air Force and X-Hab 3D
“Impactful innovations require impactful organizational change,” Major Brian Vickers told Department of Defense (DoD) outlet DVIDS. Maj. Vickers, the Deputy Base Civil Engineer at Maryland’s Martin State Air National Guard...
Fictiv Sold to Japan’s MISUMI for $350 Million
MISUMI (TSE: 9962) is acquiring Fictiv for $350 million. The Japanese manufacturer, known for supplying factory automation components like shafts, bearings, and fasteners, wants to combine its global production and...
Japan Unveils World’s First 3D Printed Train Station
Japan is now home to what we believe is the world’s first train station built with 3D printing technology. Located in Arida City, just south of Osaka, the new Hatsushima...
3D Printing News Briefs, April 12, 2025: RAPID Roundup
The news from last week’s RAPID+TCT in Detroit just keeps on coming! That’s why today’s 3D Printing News Briefs is another RAPID Roundup of more exciting announcements from the trade...