WPI Explores 3D Printed Search and Rescue Robots

IMTS

Share this Article

Grants are often so peculiarly specific that you can’t help but believe them to be entirely accurate. Take this example: Worcester Polytechnic Institute (WPI) researcher Markus Nemitz is set to receive $599,815 to develop low-cost search and rescue robots. These machines are envisioned to swim, climb, and navigate confined spaces, and their efficacy will be tested on a scale model of the Thai cave where 12 students and their coach were famously trapped in 2018.

Two thoughts come to mind: 1. I’m tempted to drop everything to see if I can work with Markus and contribute to his journey. 2. I sincerely hope that he has access to much more than $600,000.

Nemitz elaborated on the project:

“Disasters often demand unique, specialized responses, such as was required for the Tham Luang cave crisis. There lies immense potential in the development of small robots that are quickly fabricated from soft, flexible materials. These robots can significantly aid rescue efforts by exploring areas that pose potential hazards to humans or are otherwise inaccessible, including earthquake debris, flooded regions, and even nuclear accident sites. Robots can go to places beyond human reach. Equipped with sensors such as microphones and cameras, these robots will enhance the capabilities of rescuers, especially during natural disasters. To ensure a dynamic and rapid response to emergencies, we must continually innovate and develop new technologies. Robotics is at the forefront of this development.”

The funding is a CAREER award from the National Science Foundation, intended to stimulate young researchers. The 3D printed robots will be soft and made to order, embracing the emerging field of soft robotics.

Another Paper which looks at soft robots for oil and gas.

In this case, the 3D printed robots will possess “mechanical intelligence, embedded fluidic circuits, and flexible electronics,” enabling them to meet demanding missions. Reading between the lines of the grant, it’s clear the mission extends beyond simple rescue efforts. In fact, Nemitz’s earlier work was even sponsored in part by the Army. A headline like ‘Adorable, Soft Cave Rescue Robot’ is more appealing than ‘3D-Printed Killer SEAL Robots Targeting America’s Enemies.’

Another paper showcasing a soft piston.

The aim is to leverage soft robotics’ inherent robustness and versatility, creating something more akin to a flexible jellyfish than a clunky machine that requires a number of sensors. These robots could use fluidic logic to trigger actuators, responding naturally to gravity and obstacles. Using 3D printed channels, gates, and valves, calculations and actuation could create intricate and powerful arrangements. This approach draws inspiration from previous work such as Octobot from Harvard’s Wyss lab and Hod Lipson’s research. Markus’s robots will also include “multi-stable flexing beam structures with integrated linear actuators and fluidic tubing.”

Another paper showcasing the movement of a more octo inspired arm than we’re used to

While microfluidics might be considered a “brain” for these robots, they will also be equipped with flexible electronics. It’s almost disappointing that microfluidics won’t handle everything, but the team is working to minimize electronic usage. Furthermore, Markus plans to demo his technology to high school students and even teach a course on 3D printable robotics. Back in 2017, I wrote an article on 3D printed soft robotics, concluding that most soft robots were conceptually amazing but seemed to serve no real purpose. Since then, we’ve seen some development, but little else. Hopefully, with work like that of WPI, we’ll begin to see the sector truly break out of the lab.

Share this Article


Recent News

3D Printing Webinar and Event Roundup: April 28, 2024

3D Printing News Briefs, April 27, 2024: Research, Digital Dentistry, Cycling, & More



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

New Report: Semiconductor Industry to See $1.4B in 3D Printing Revenues by 2032

“The semiconductor sector has become the most strategically significant area of global industry.” Truer words are hard to come by when it comes to the modern world, and they are...

Will Photonic-Crystal Lasers Revolutionize 3D Printing?

Powder bed fusion (PBF) for metals and polymers predominantly utilizes lasers as the primary heat source. Some directed energy deposition (DED) technologies also employ lasers, while various vat polymerization methods...

3D Printing Unpeeled: Orbex Investment, IndoMIM and HP, Ultrasonic Waves

INDO-MIM has bought three HP Metal Jet S100 printers, operating two in India and one in Texas. This is a win for HP because the company has deep experience in...

3D Printing Webinar and Event Roundup: April 21, 2024

It’s another busy week of webinars and events, starting with Hannover Messe in Germany and continuing with Metalcasting Congress, Chinaplas, TechBlick’s Innovation Festival, and more. Stratasys continues its advanced training...