AMR

Purdue University Combines Piezoelectric Poling & 3D Printing

Share this Article

Using electric poling one can make a material piezoelectric, meaning that it can convert mechanical energy into electric energy and then reverse this reaction using crystals. Research into this area as it relates to 3D printing has already been explored, as demonstrated by 2015 work at the University of South Carolina. The latest research comes from Purdue University, published in the journal Additive Manufacturing.

In a process the team calls “Electric Polling assisted Additive Manufacturing (EPAM),” Purdue scientists combined material extrusion of polyvinylidene fluoride (PVDF) with a corona polling step to create PVDF components with piezoelectric properties. They state their advantages as reducing the need for an additional process step while also expanding the design freedom to make piezoelectric components of more varied geometries. During the print process, the filament is elongated and electrically changed. The simultaneously polled reordering is what makes this possible and it results in piezoelectric activity that is five times higher than other methods.

The team used Arkema Fluor X Kynar PVDF filament on a MarkerBot Replicator 2. In a later test, they combined it with direct ink writing (DIW) to make a simple circuit. Supported by an NSF grant to make more ubiquitous agricultural and robotic sensors, the work was a part of much more extensive RoseHub research, which looks very broadly at creating new sensors for health and industrial processes. Purdue is one of the Universities in the Robots and Sensors for the Human Well-Being initiative along with the University of Minnesota, University of Denver, and the University of North Carolina, Charlotte which performed earlier work. The main idea is to use a low-cost process to make stress sensors in a myriad of shapes. The work was lead by Robert Nawrocki, assistant professor in the School of Engineering Technology at Purdue.

“During the EPAM process, stretching the molten PVdF rod rearranges the amorphous strands in the film plane, and the applied electric field aligns dipoles toward the same direction. The EPAM process can print free-form PVdF structures and induce the formation of β-phase, which is primarily responsible for the piezoelectric response. The piezoelectric activity, measured in picocoulombs per newton, or pC/N, was calculated based on the piezoelectric output voltage. The average piezoelectric activity of EPAM-printed PVdF films was 47.76 pC/N, or about five times higher than unpoled 3D-printed films, at 9.0 pC/N. The piezoelectric activity of unpoled 3D-printed PVdF films indicated that 3D printing in the absence of an electric field did not result in dipole alignment.”

So far, the work is more go boilerplate than go boilermakers, it is a bit vague what all of this means practically apart from the University’s excitement at potentially commercializing this. We’ve written before that 3D printed sensors could be instrumental in making IoT a reality, and we’ve looked at Material Extrusion sensors for wearables, and ABS Material Extrusion sensors before. In another paper, the team say that an application could be “large sensing arrays integrated temperature, pressure, and humidity sensing functionalities in wearable electronics and soft robotics” and “sensing devices, actuation systems for soft robotics to achieve multi-functionality with similar or even better performance than their prototypes in nature and find even broader applications.” That sounds very exciting indeed. If the performance of final parts stack up we could see custom wearable devices that could make use of this technology. Or perhaps nifty soft robots could feel their way around their world with 3D printed sensors. The 3DXtech filament used is expensive at $190 for 750 grams but it was printed on a Makerbot at 200C so it could be something that would be low cost as a process at least and very accessible. You could can now make piezoelectric components at home.

Share this Article


Recent News

3D Printing News Briefs, July 27, 2024: Materials, Biomedical Titanium Implants, & More

GM Leads $39M Series B for 3D Printed Battery Startup Addionics



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Governor of Michigan & Secretary of the Navy Announce Michigan Maritime Manufacturing Initiative

The US Navy is once again demonstrating that it’s at the forefront of the domestic advanced manufacturing landscape, with Secretary of the Navy Carlos Del Toro on July 22 announcing...

The Public Arena: EOS Government Relations Manager on Why the Company is All in on Reshoring 3D Printing

EOS has never not been at the forefront of additive manufacturing (AM). Among countless other feats, the German company, which has a strong presence in the US, has a global...

3D Printing Service with a Smile: Protolabs CEO Rob Bodor on the Company’s Future in AM

Protolabs (NYSE: PRLB) is much more than a 3D printing company, it’s a comprehensive digital manufacturer. Nevertheless, precisely because the company has competencies in more or less every cutting-edge industrial...

Siemens Increases Attention on US 3D Printing Landscape

Global industrial giant Siemens has announced that the company is taking steps to help bolster the US additive manufacturing (AM) industry. The efforts will surround Siemens’ Charlotte Advanced Technology Collaboration...