Inheritance of Water Culture: 3D Printing a Landscape


Share this Article

The sand table is a relatively common form of cultural display in museums and similar centers. Compared with simple text and pictures, miniature dioramas directly show the audience a realistic scene and deepen their memory of it. However, the production of sand table scenes has traditionally been extremely labor-intensive, requiring a great deal of time and energy to complete. However, with the advent of 3D scanning and 3D printing, creating such a display has become increasingly streamlined.

Capturing Chinese History with 3D Printing

Traditionally, museum dioramas might be made with clay, which is difficult to preserve. Moreover, the production process of clay figurines is time-consuming, with more stringent requirements for designers. 3D scanning and printing technologies, however, disrupt traditional craftsmanship.

West Lake.

Demonstrating the possibilities, this technology was crucial to the production of a sand table exhibiting the Hangzhou Xianlin Reservoir. Chinese calligrapher, essayist, gastronomer, pharmacologist, poet, politician, and travel writer during the Song dynasty, Su Dongpo performed a treatment of West Lake while he was governor of Hangzhou in 1089. To recreate this event for the public, 3D printing and scanning were utilized. The technology greatly shortened the project production time, while vividly presenting the historically important event of Su Dongpo’s treatment of West Lake.

Let’s take a look behind the scenes of creating the diorama.

Step 1: 3D Scanning

We used a handheld iReal color 3D scanner to capture complete and accurate 3D models of actors who wore specific costumes and performed predetermined actions, designed according to a concept drawing.

With infrared structured light technology, the scanner offered a safe and comfortable scanning experience for the actors. The large field of view and depth of field made it possible perform smooth and fast scanning, benefiting the models who had to keep still in specific poses. The device can scan a full human body within just minutes. In this project, we scanned more than 10 individuals.

Step 2: Process Scan Data

Next, we performed post-processing of 3D scan data. This included enhancing details, sculpting where images were incomplete, modifying scan errors, adjusting poses, and creating tools in third-party software, such as ZBrush or Blender, to make it more detailed. The optimized 3D data can additionally be saved for digital archiving to be used in a variety of production processes, such as CNC engraving, open mold production, copper casting, and foam sculpting, according to various scene requirements.

Step 3: 3D Printing Figures for the Diorama

A UnionTech 3D printer was used to obtain the figurines quickly. Stereolithography (SLA) 3D printing has a number of advantages for this process, such as the production of smooth surfaces (easy for painting), fast printing, and rich details.

Step 4: Painting

Less-toxic, acrylic paints can be used to color the objects, due to rapid drying, durability, and water-resistance after drying.

Step 5: Final Set Up

Finally, we set up the scenes based on the drawing displayed in the showroom.

Artifacts of cultural heritage are imbued with national spirit, but also serve as historical treasure for all of humanity. It is, therefore, everyone’s responsibility to protect cultural heritage, thus bestowing a national inheritance to the proceeding generations, whenever possible. By blending technology and culture, we continue to explore new ways of cultural inheritance and protection. New digital technologies, such as the Internet, 3D digitization, 3D printing, AR and VR are increasingly being introduced into the protection and inheritance of cultural artifacts, so that vivid presentations of these materials are preserved in the now and into the future.

Share this Article

Recent News

3D Printing News Briefs, March 2, 2024: 3D Printed Firearms, FDA Clearance, & More

3D Printing Financials: Materialise Reports Growth in 2023 with Medical Segment Success


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

3D Printing Financials: Xometry’s Year of Growth and Challenges

Finishing 2023 amid broader economic challenges that have troubled many in the 3D printing sector, Xometry (Nasdaq: XMTR) reported a solid 31% increase in the fourth quarter revenue, reaching $128...

3D Printing Financials: 3D Systems Misses Revenues by 9.32%, Targets 2027 for Clinical Human Lung Trials

In the latest financial unveiling, 3D Systems (NYSE: DDD) shared its fiscal report for the last quarter of 2023 and the entire year, shedding light on its struggles and strategic...

3D Printing Webinar and Event Roundup: February 25, 2024

It’s another busy week of webinars and events in the AM industry, including Silicone Expo Europe in Amsterdam, an open house for Massivit in North America, and the AM for...

Materialise Expands Jaw Surgeries with End-to-End Medical 3D Printing Treatment

Imagine the discomfort of experiencing pain every time you eat, or the constant radiating pain in your head due to this condition—it would be incredibly distressing. One reason why joint...