AMS Speaker Spotlight: The Four Must-Haves of Distributed Manufacturing: Metal 3D Printing Edition


Share this Article

Tali Rosman, Vice President and General Manager of Xerox Elem Additive, will be giving the topic keynote for Session 1: Additive Manufacturing for Series Production of Metal Parts at Additive Manufacturing Strategies 2022, March 1-3. She will also be participating in Panel 2: Emerging applications for Metal Series Production.

Distributed Manufacturing can ease supply chain stress and eliminate bottlenecks by producing parts at the point of demand. This decentralized approach to manufacturing can have a profound effect on equipment downtime, inventory costs, and be a major contributor to reducing the carbon footprint. Manufacturers across the globe, specifically transportation and heavy equipment providers, are embracing this and searching for advanced technologies that are compatible with this direction.

Additive manufacturing (AM), specifically metal AM, is quickly evolving and becoming qualified for more than product development purposes. The reliability, part density, and material improvements enable metal AM to be a major tool for repairs, spares and low volume production needs. Can strategically distributed metal AM create a more resilient supply chain? I say yes and here are the four must-haves when it comes to implementing a truly distributed manufacturing approach with metal AM.

1. Location, Location, Location

In 2019, British Airways published an article focused on strategically placing printers at airports around the world to reduce delays for customers and emissions typically caused by transporting items. According to the article, 3D printing is an essential step towards the sustainable future of aviation, providing a path towards part light-weighting and eliminating the need to fly spare parts around the world with a decentralized manufacturing strategy.

Determining the location of these microfactories for point-of-demand manufacturing must be a strategic decision.  It’s obvious for the aviation industry, but what about heavy equipment, energy, transportation or defense sectors?  Adopting a pragmatic approach that combines customer density data, geographic utilization and future growth expectations will provide a clearer picture towards a successful distributed manufacturing strategy.

2. Easy, Dependable Metal AM

There are multiple metal additive technologies available within the industry. The focus of your application or purpose will determine which technology is right for you. Many current platforms can be quite complicated and require a certain amount of engineering expertise to maximize capabilities. This makes it challenging to teach multiple users, especially if they are located in various locations across the globe.

The goal is to have simple technologies that are attrition-proof and learnable by all levels of operators. If scalability is partly defined by accessibility, then we must also consider simplicity. At Xerox, we take this very seriously and have made ease-of-use a strategic focus with our Liquid Metal AM platform, ElemX.

3. Deployability

Deployability is defined by how feasible it is to adopt or apply a device in an actual implementation while ensuring that it is easy to arrange, place, or move strategically or appropriately. While many polymer printing technologies are relatively easy to install/de-install, that isn’t always the case with metal AM. Often, sophisticated systems require special facility accommodations and may raise challenges when it comes to material handling.

This is a key consideration to the future of distributed manufacturing. The ability to quickly install equipment at non-specialized or common machine shop facilities adds a significant advantage for OEMs and suppliers to strategically move printers on-demand to high-value locations. For example, military organizations across the globe are exploring metal AM for disaster relief scenarios and foreign base operations. Having metal AM that is deployable makes it easier to distribute.

4. Intelligent Software Tools

The final and maybe most important piece to the puzzle is having an integrated software platform that can connect and communicate across all locations, printers, users, etc. Access to a digital repository of 3D files with complete metadata makes it easier to assign jobs to specific printers within the distributed manufacturing network. These software tools must be technology agnostic and consider all the complexities that polymer and metal 3D printers possess. Finally, the ability to compare and contrast multiple technologies for cost and lead time is an invaluable data point that can help manufacturers make better-informed decisions for immediate part production.


Of course, there are many other factors to consider, and every OEM, government, or manufacturer must prioritize what is most important to their distributed manufacturing model. In my experience, equipment downtime is unacceptable, and customer satisfaction can never be overlooked, so part scheduling and immediacy is paramount. At Xerox, we are actively developing new hardware and software solutions that make it easier and safer to enable distributed manufacturing for anyone. We invite you to learn more about how we are tackling the next generation of innovation at

Share this Article

Recent News

Draper Engine Hotfire is Ursa Major’s Latest Win for 3D Printed Rocket Motors

From Concrete to Coral: New Zealand to Boost Marine Life with 3D Printed Barnacles


3D Design

3D Printed Art

3D Printed Food

3D Printed Guns

You May Also Like

Union-Private Company Alliance to Transform Construction 3D Printing in the Pacific Northwest

Construction 3D printing pioneer Alquist 3D has forged a strategic partnership with a consortium of industry leaders, including the Cement Masons and Plasterers’ Local 528, a union based in the...

Saving the New Zealand Fairy Tern: 3D Printed Eggs on Easter Sunday

In honor of Easter Sunday today, we’re bringing you a special story about 3D printed eggs, but this isn’t your typical Easter Egg piece. The Department of Conservation (DOC) in...

3D Printing Unpeeled: 3D Printing Endangered Bird Eggs, Polymer Satellite Bus, QIDI

The New Zealand Department of Conservation (DOC) is using 3D printing to help protect the endangered fairy tern. The New Zealand variant is critically endangered with only about 40 of...

US’s Largest Homebuilder D.R. Horton Invests in Construction 3D Printing Startup Apis Cor

Apis Cor, a manufacturer of robotic construction 3D printing technologies, has recently announced a new partnership in its journey towards evolving the global building sector. The company revealed that D.R....