EPlus3D

Synthetic DNA to Become “Ink” for 3D Printed Nanoscale Structures in Medical and Scientific Applications

Metal AM Markets

Share this Article

We’ve heard about filament to produce our common and not so common 3D printed objects and dna1devices.  We’ve also heard about the medical advances that 3D printing facilitates, such as the use of nylon polymer in customized surgical 3D printed implants.  Well, science and medical research has taken another large leap toward something virtually unimaginable, yet, closer than it may seem: 3D printing using synthetic DNA.  Today, MIT News reports that researchers have come a  step closer to replicating DNA structures that can then be used in 3D design and printing — “Where the ink is synthetic DNA.”

Back in May, it was announced that a replicable synthetic form of DNA has been created — none oforig which is found in nature.  Synthetic DNA can aid research in areas of new medicines, diagnostics, and vaccines, and it can also be used to create nanomaterials.

DNA can be programmed by changing its sequence, and has a stable structure, leading scientists seeking to build nanoscale structures to see DNA as an excellent building material. Mark Bathe, an associate professor of biological engineering, led a team of researchers who began to create tiny computer-modeled DNA structures around 2005 via a process they dubbed DNA origami, using DNA “scaffold” strands and smaller “staple” strands that bind to the scaffold. The structures were initially created in 2D, and later were translated into the third dimension.

Researchers eventually developed computer models for the design process to streamline the previously time-consuming activity; the MIT team developed a program called “CanDo”  in 2011 in order to generate 3D DNA structures. It was limited to rectangular or hexagonal shapes, but now a computer algorithm can create much more complex structures than were previously possible by cutting DNA sequences into subcomponents, which become the fundamental building blocks of programmed DNA nanostructures.

MIT-3Q-DNA-Shapes-01

 

Rings, discs, and spherical containers, all with nano-scale dimensions, are the result of cutting DNA into smaller sections. The designers can then create “symmetric cages” — such as tetrahedrons, octahedrons, and dodecahedrons (see above).  This is where 3D printing comes in.

Researchers were predicting the 3D structure of these reassembled “symmetric cages” on computers: “Predicting their 3-D structure…is central to diverse functional applications we’re pursuing, sincemiot ultimately it is 3-D structure that gives rise to function, not DNA sequence alone,” said lead researcher Bathe.

Once researchers have access to 3D printing the nanoscale arbitrary geometries of DNA structures, they can use them for many different applications by combining them with other kinds of molecules.  Bathe reports molecules being studied here include chromospheres, which are active in the process of photosynthesis.  Also, the application can be used with the study of bacterial toxins, aiding in the creation of a system for RNA and other drug therapy delivery.

The algorithm the researchers have developed will be available for public use in upcoming months, allowing for expanded use among others involved in DNA design research. While in its present form, the model requires the designer to supply the sequence of the DNA, Bathe and his team intend for future iterations to allow for a computer-generated model. With the designer providing a shape, the computer model should generate the sequence to produce that shape — this future version would allow for the synthetic DNA to be used as “ink” in nano-scale 3D printing.

While this research progress may seem overwhelming, if you follow the trajectory of precise computer modeling from 2- to 3-dimensional, you can understand that a 3-dimensional design can lead to actual 3D printed materials.  This “made-to-order” nanoparticle design and synthesis procedure will be realized using 3D printing technology, but it’s not the usual filament they are talking about here in those cartridges — it’s synthetic DNA!

Let’s hear your thoughts on this story in the Synthetic DNA & 3D Printing forum thread on 3DPB.com. Be sure to check out this video concisely explaining the process:


Share this Article


Recent News

Human Remains Could Be Identified with the Help of Forensic 3D Printing

US Air Force and Japan Building Leader Back Branch Technology’s Construction 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Chinese 3D Printed Medicine Company Triastek Lands $20.4M in Pre-C Round

Triastek, the leader in additive manufacturing (AM) for pharmaceuticals based in Nanjing, China, has completed a Pre-C financing round worth $20.4 million dollars. Led by Guoxin International Investment, a Chinese...

3D Printing News Unpeeled: 16 & 20 lasers & Mighty Buildings Gets $52m

Farsoon Technologies and Bright Laser Technologies (BLT) both unveiled large powder bed fusion machines. Farsoon´s FS1521M has 16 fiber lasers and a 1.5 meters by 850mm Z-axis build volume. BLT´s BLT-S800...

$52M in Funding Will Push Mighty Buildings’ 3D Printed Houses into Middle East

Oakland’s Mighty Buildings, a maker of sustainable prefabricated homes produced with additive construction (AC), has received $52 million in its latest funding round. Two firms co-led the series, including Wa’ed...

US Air Force Awards $1.13M for 3D Printed Construction Retrofitting

Branch Technology, the Chattanooga-based additive construction (AC) firm, has been awarded a $1.13 million contract from the US Air Force for its proprietary Cellular Fabrication (C-Fab) technology. The Air Force...