Synthetic DNA to Become “Ink” for 3D Printed Nanoscale Structures in Medical and Scientific Applications

Share this Article

We’ve heard about filament to produce our common and not so common 3D printed objects and dna1devices.  We’ve also heard about the medical advances that 3D printing facilitates, such as the use of nylon polymer in customized surgical 3D printed implants.  Well, science and medical research has taken another large leap toward something virtually unimaginable, yet, closer than it may seem: 3D printing using synthetic DNA.  Today, MIT News reports that researchers have come a  step closer to replicating DNA structures that can then be used in 3D design and printing — “Where the ink is synthetic DNA.”

Back in May, it was announced that a replicable synthetic form of DNA has been created — none oforig which is found in nature.  Synthetic DNA can aid research in areas of new medicines, diagnostics, and vaccines, and it can also be used to create nanomaterials.

DNA can be programmed by changing its sequence, and has a stable structure, leading scientists seeking to build nanoscale structures to see DNA as an excellent building material. Mark Bathe, an associate professor of biological engineering, led a team of researchers who began to create tiny computer-modeled DNA structures around 2005 via a process they dubbed DNA origami, using DNA “scaffold” strands and smaller “staple” strands that bind to the scaffold. The structures were initially created in 2D, and later were translated into the third dimension.

Researchers eventually developed computer models for the design process to streamline the previously time-consuming activity; the MIT team developed a program called “CanDo”  in 2011 in order to generate 3D DNA structures. It was limited to rectangular or hexagonal shapes, but now a computer algorithm can create much more complex structures than were previously possible by cutting DNA sequences into subcomponents, which become the fundamental building blocks of programmed DNA nanostructures.

MIT-3Q-DNA-Shapes-01

 

Rings, discs, and spherical containers, all with nano-scale dimensions, are the result of cutting DNA into smaller sections. The designers can then create “symmetric cages” — such as tetrahedrons, octahedrons, and dodecahedrons (see above).  This is where 3D printing comes in.

Researchers were predicting the 3D structure of these reassembled “symmetric cages” on computers: “Predicting their 3-D structure…is central to diverse functional applications we’re pursuing, sincemiot ultimately it is 3-D structure that gives rise to function, not DNA sequence alone,” said lead researcher Bathe.

Once researchers have access to 3D printing the nanoscale arbitrary geometries of DNA structures, they can use them for many different applications by combining them with other kinds of molecules.  Bathe reports molecules being studied here include chromospheres, which are active in the process of photosynthesis.  Also, the application can be used with the study of bacterial toxins, aiding in the creation of a system for RNA and other drug therapy delivery.

The algorithm the researchers have developed will be available for public use in upcoming months, allowing for expanded use among others involved in DNA design research. While in its present form, the model requires the designer to supply the sequence of the DNA, Bathe and his team intend for future iterations to allow for a computer-generated model. With the designer providing a shape, the computer model should generate the sequence to produce that shape — this future version would allow for the synthetic DNA to be used as “ink” in nano-scale 3D printing.

While this research progress may seem overwhelming, if you follow the trajectory of precise computer modeling from 2- to 3-dimensional, you can understand that a 3-dimensional design can lead to actual 3D printed materials.  This “made-to-order” nanoparticle design and synthesis procedure will be realized using 3D printing technology, but it’s not the usual filament they are talking about here in those cartridges — it’s synthetic DNA!

Let’s hear your thoughts on this story in the Synthetic DNA & 3D Printing forum thread on 3DPB.com. Be sure to check out this video concisely explaining the process:


Share this Article


Recent News

MULTI-FUN Consortium Aims to Improve Metal 3D Printing

JCRMRG’s 3D Health Hackathon Aims for Sustainable 3D Printed PPE



Categories

3D Design

3D Printed Art

3D printed automobiles

3D Printed Food


You May Also Like

3D Printing Webinar and Virtual Event Roundup, July 7, 2020

We’ve got plenty of 3D printing webinars and virtual events to tell you about for this coming week, starting with nScrypt’s webinar today. 3Ding and Formlabs will each hold a...

Featured

Interview: Redefine Meat CEO’s Insight into New Alternative Meat & 3D-Printed Food

Amid lifestyle changes toward wellness and health, as well as an inclination of industries to adopt disruptive technologies, the 3D printed plant-based meat industry could go from niche to mainstream...

NIST Grants $1.4 Million to America Makes for 3D Printed PPE

As the COVID-19 pandemic has swept the world and changed life as we know it in many ways—along with opening up many questions for the future—makers, researchers, and medical inventors...

Featured

French Army Deploys Massive Military Print Farm for Spare Parts

The French Army has recently partnered with HAVA3D, a prominent distributor and integrator of additive manufacturing solutions based out of Le Mans, France, to deploy one of the largest 3D...


Shop

View our broad assortment of in house and third party products.