New, Powerful Metal 3D Printing Tech Being Explored by Fraunhofer IWS

Share this Article

The Fraunhofer Institute for Material and Beam Technology (Fraunhofer IWS) is experimenting with a new, high-powered metal 3D printing technology. Based on a technology called coherent beam combining (CBC), the institute’s dynamic beam shaping process can deliver varying levels of energy across a build area at once.

Fraunhofer IWS is now the first research facility globally to install a 13kW “Dynamic Beam Laser” from Israeli firm Civan Laser. The device is capable of delivering a variety of energy distribution patterns quickly by joining together multiple individual beams into a single ray of energy. Due to the phase shifts of the separate beams, it can create different patterns—such as a horseshoe, a figure eight, or a ring—with different energy intensities across the shape.

A Fraunhofer IWS researcher setting up the new Civan Dynamic Beam Shaping laser.

“The “Dynamic Beam” laser from Jerusalem has now been installed at Fraunhofer IWS in Dresden. The institute is thus the first research institution worldwide to utilize such a laser solution.” Image courtesy of Fraunhofer IWS.

While such techniques are possible with mirrors and other optics, oscillating mirrors require time to align energy patterns. Civan’s laser, however, can achieve this feat in just microseconds, making it a thousand times more rapid than an oscillating mirror setup.

As a part of Europe’s ShapeAM project, Fraunhofer IWS will work with Civan Lasers and A. Kotliar Laser Welding Solutions to explore how the technology can be applied to 3D printing. This includes the production of titanium and aluminum items for space, medical implants, and lightweight parts for mobility. Dynamic beam shaping is believed to produce higher quality parts through the elimination of defects.

Two Fraunhofer IWS researchers hold a workpiece made with the Dynamic Beam Shaping laser.

“Thanks to ‘coherent beam combining’, the 13-kilowatt laser can generate energy distribution patterns thousands of times faster during operation compared to conventional mirror-based methods. This speed makes it possible for the first time to use dynamic beam shaping for additive manufacturing of metals.”

“This laser will push the limits of materials processing, for example in medical technology and aerospace,” said Dr Andreas Wetzig, head of the cutting and joining program at Fraunhofer IWS.

“We plan to use novel beam shapes and control frequencies that are not achievable with other methods to overcome challenges in crack-sensitive materials,” said Dr. Elena Lopez, head of additive manufacturing at Fraunhofer IWS.

The team will set about testing a variety of materials and beam profiles before exploring such applications as how to 3D print, cut, or combine workpieces made from difficult-to-work-with materials and composites. It is believed that the technology will offer faster and finer control over the melt pool to produce parts and cuts without burrs twice as fast as traditional fiber lasers.

Share this Article


Recent News

US Justice Department and ATF Push to Stop 3D Printed Machine Gun Switches

3D Systems and Smith+Nephew Get 510(k) Clearance for 3D Printed Ankle Replacement Treatment



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Printing Money Episode 21: Q2 2024 Earnings Analysis with Troy Jensen, Cantor Fitzgerald

Like sands through the hourglass, so is the Q2 2024 earnings season.  All of the publicly traded 3D printing companies have reported their financials, so it is time to welcome...

3D Printing Financials: After Long Silence, 3D Systems Reports Q2 Losses, Sees Recovery Signs

3D Systems (NYSE: DDD) has finally shared its financial details for the second quarter of 2024 after a long delay. The company had been unusually quiet, with no updates on...

Emerging AM Technologies Analysis: Where Are They Now, Part 2

In March 2023, AM Research published the “Emerging AM Technologies Analysis: 10 Companies to Watch” report highlighting 3D printing companies with the potential to disrupt the additive manufacturing (AM) industry....

Oqton Wins over EOS with Quality Control Software Integration

When 3D Systems acquired Oqton, there were concerns about whether other original equipment manufacturers (OEMs) would continue to trust and share information with Oqton. Oqton’s automation and process software can...