ROKIT Healthcare develops novel cartilage regeneration therapies using bioprinting

Share this Article

ROKIT Healthcare, in cooperation with a Massachusetts-based U.S. hospital, has completed pre-clinical studies for cartilage regeneration using the 3D bioprinting technology and is in the process of clinical studies with patients of age-related osteoarthritis in Egypt.

The pre-clinical study, performed together with the Charles Bragdon group at Massachusetts General Hospital, lasted about six months and followed up with the progress of hyaline cartilage regeneration in beagles.

H&E staining result shows a cluster of cells, surrounding the particle which gradually induce regeneration of tissue. Unlike the comparison group, cells gradually surround the particles of ROKIT bio filler and induce regeneration of tissue.

Existing cartilage repair therapies, based on stem cell injections and seeding and culturing of cells onto alternative membranes, have limitations in treating cartilage which has complex 3D structures and compositions. Combining 3D bioprinting with optimized bioinks composed of minced cartilage and autologous solutions from the patient, ROKIT Healthcare seeks to offer a novel therapy that is founded on providing a stable environment for the recruitment of endogenous stem cells and the differentiation of 3D structurally positioned stem cells into chondrocytes in vivo.

“There has yet to be any truly regenerative method for cartilage repair despite osteoarthritis being one of the top public health burdens in this era of aging populations,” said Seok Hwan You, CEO of ROKIT Healthcare. ”Recently on the news there have been reports of recalls of artificial knee cartilage replacements, including products that have for long comprised the majority of cartilage repair markets. This testifies there are intrinsic limitations of synthetic and allogenic tissue engineering methods, and we need to find autologous alternatives that rely on bioprinting of autologous solutions to the defect site and creation of an endogenous regeneration niche. All of this needs to be done in the safest way that minimizes risk and long-term treatments.”

ROKIT Healthcare has completed applying for domestic and international patents for printing the cartilage regenerative 3D constructs using the MRI/CT scan data of the patient and inserting them back into the patient knee while minimizing the incision. Following the initial rounds of pre-clinical study in the U.S. and clinical study in Egypt, the clinical studies are planned to continue in Korea and Singapore.

Share this Article


Recent News

3D Printing News Briefs, June 17, 2021: Titomic, Evonik & Farsoon, Humabiologics, UCSD, Syng, FuzzyLogic

Push Button Metal, Part 3: More Metal 3D Printing Players in an Evolving Space



Categories

3D Design

3D Printed Art

3D Printed Guns

3D Printer Reviews


You May Also Like

Featured

Cold Metal Fusion: How One Company Converts SLS to Metal 3D Printing

Headmade Materials could have a potentially transformative impact on 3D printing. It remains to be seen if the company can make its technology work well at scale and make it...

Featured

Arkema Buys 10% Stake in Serial 3D Printing Firm ERPRO 3D FACTORY

Investment activity in 3D printing companies is at an all time high. One family of strategic investors that are funding across the 3D printing market are polymer companies. Covestro (DSM),...

Norwegian Robotics Firm to Develop Underwater 3D Printer

A Norwegian robotics firm called Kongsberg Ferrotech, which creates subsea robots for the oil and gas industry, is developing a form of underwater 3D printing for repairing pipelines below the...

3D Printing Webinar and Event Roundup: June 6, 2021

We’ve got another busy week of webinars and events, both live and online, to tell you about in this week’s roundup! Topics run the gamut from 3D printing aircraft cabin...


Shop

View our broad assortment of in house and third party products.