FibreTuff, headquartered in Toledo, OH, has been at the forefront of manufacturing materials for bioprinting and medical use in recent years, creating a range of innovative products for fabrication of medical devices, implants, and 3D printed anatomical models.
At a recent medical conference centered around craniomaxillofacial surgery, 50 surgeons were in attendance examining the bone-like, anatomically correct, 3D printed models fabricated with FibreTuff. Printed on an Ultimaker S5, the initial 3D scans for the models were prepared by Dr. Strong at the University of California. Delray Systems in Rochester, MI, performed the 3D printing of eight skulls in total.
Each of the skulls was used during demonstrations at the medical event, displaying orbital implants. In a recent press release sent to 3DPrint.com, the FibreTuff team stated that surgeons attending the event were excited to find out that FibreTuff materials can be sterilized in an Autoclave, along with exhibiting ‘exceptional’ screw retention and offering users the ability to make 3D printed models with small pores similar to cancellous bone.
Surgeons at the event also gave feedback, expressing the need for biomaterials that can be 3D printed and appear similar to bone with both osteoconduction and osteoinduction qualities. Also of note is that medical professionals in Ohio have recently confirmed that FibreTuff does possess conductive qualities, evidenced in a study using two different types of 3D printed scaffolds.
While FibreTuff materials can be used in a variety of applications—to include automotive and cosmetics—3D printing with biomaterials offers the potential for a drastic change in the medical realm due to the growing ability for surgeons and other medical professionals to offer patient-specific treatment. A one-size-fits-all mentality no longer works for many patients and medical professionals who have discovered ways to customize models, implants, and devices affordably—and quickly.
Just the ability to make 3D printed medical models opens up a whole world in terms of diagnosing and then offering treatment for patients who may be suffering from diseases like lung cancer resulting in tumors, as well as educating them (and their families) regarding their conditions, their possible upcoming surgeries, and more.
Medical students are able to use 3D printed models for training purposes, allowing for much greater latitude in learning and practicing techniques—especially valuable when availability to human cadavers can be scarce. Models are also extremely valuable to surgeons who may be about to undertake new or rare procedures. Such training devices allow them extensive time to plan ahead of time for surgeries as well as using models in the operating room as guides.
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: FibreTuff]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
3D Printing Webinar and Event Roundup: August 18, 2024
In this week’s Webinar and Event Roundup, Stratasys continues its advanced training courses and its U.S. tour, while TriMech hosts a Technology Showcase, Endeavor 3D offers a webinar about robotics...
University of South Australia Opens Metal 3D Printing Facility Dedicated to Space Parts
The University of South Australia (UniSA) has opened a metal additive manufacturing (AM) facility in Adelaide, focused on R&D into producing components for the space applications. The facility is located...
Australia’s SPEE3D: The Most American 3D Printing Company
In the additive manufacturing (AM) industry, arguably the most important original equipment manufacturer (OEM) to the US Department of Defense (DoD) right now is SPEE3D, the maker of cold spray...
Four Reasons Why the Department of Defense is Outsourcing to Contract Additive Manufacturers
Equipment downtime is unacceptable. In the commercial environment, this results in loss of dollars and opportunities. On the battlefield, equipment downtime can be catastrophic and jeopardize the lives of servicemen...