Cartilage Tissue Engineering via Characterization and Application of Carboxymethyl Chitosan-Based Bioink
International researchers continue the trend in exploring natural biomaterials for bioprinting, detailing their findings in the recently published ‘Characterization and Application of Carboxymethyl Chitosan-Based Bioink in Cartilage Tissue Engineering.’
Examining chitosan as an ingredient for bioink in cartilage tissue engineering, the authors realize previous challenges in using printable inks overall—along with difficulty in sustaining cells in the lab environment. Such material has been featured in 4D printing studies, along with experimentation in bioprinting with chitosan-gelatin hydrogels.
Chemical crosslinking has also been used by many research teams, employing chemicals like glutaraldehyde, formaldehyde, and carbodiimide; however, many such agents are high in toxicity, leading to negative reactions. Because chitosan is a natural polysaccharide, it is being used more often in bioprinting applications.
For this study, the researchers focused on tissue engineering of cartilage, seeking ways to regenerate cells:
“The characteristics of chitosan are similar to those of hyaluronic acid and glycosaminoglycans which are distributed extensively in native cartilage, and the degraded products of chitosan are involved in chondrification,” stated the researchers. “However, the weak mechanical property of pristine chitosan limited its further utilization in cartilage regeneration, and the poor water solubility hinders the large-scale use.”
To overcome hurdles for the development of materials with chitosan, the authors developed ink with ‘enhanced mechanical properties,’ allowing them to print hydrogel templates for cartilage bioprinting. Relying on carboxymethyl chitosan, hydrogels were suitably complemented.
Bioink was created via both pneumatic and piston-driven methods (Hkable 3D):
“In order to maintain the continuity of printed hydrogel line and prevent clogging at the extruder, the diameter of the needle used for 3D printing in this work was 0.5 mm, the air pressure was controlled by an affiliated precise regulator and set at 110 psi, and the travel speed of the extruder was set to 300 mm/min.”
Four bioink samples were evaluated in the study, compared as CE powder weight was kept the same for all but the amount of added chitosan was varied. Experimentation revealed that greater amounts of CE caused higher storage and loss modulus, as it proved also to be the main factor in strength enhancement.
Overall, the bioink showed stability and mechanical properties required for both fast gelation and precision in bioprinting.
“According to the rheology and mechanical testing results, the bioink viscoelastic properties and mechanical strength are tunable by adjustment of the proportions of the components which provides a platform to expand the application of the bioink in tissue engineering,” concluded the authors.
“Furthermore, cell studies with chondrocytes show that the bioink is biocompatible, and it supports cell proliferation as well as helps cells to retain their chondrogenic phenotype. Our results illustrate that the developed bioink has the potential to be adopted for 3D bioprinting of scaffolds for tissue engineering.”
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
[Source / Images: ‘Characterization and Application of Carboxymethyl Chitosan-Based Bioink in Cartilage Tissue Engineering’]Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Chromatic 3D Materials Raises $6M to Drive 3D Printing of Flexible Materials
Amid much doom and gloom, we are seeing a notable amount of funding for the 3D printing market, with 3DEO, Mantle, Orbex, Q5D, CORE Industrial Partners, Replique, Inkbit, and others...
6K Lands $82M for Batteries and 3D Printing Powders in Series E Round
6K, the Massachusetts-based parent company of 6K Energy and 6K Additive, has secured $82 million in the opening of its Series E round, with the round planned to close out...
3D Printing Webinar and Event Roundup: August 18, 2024
In this week’s Webinar and Event Roundup, Stratasys continues its advanced training courses and its U.S. tour, while TriMech hosts a Technology Showcase, Endeavor 3D offers a webinar about robotics...
Improving Intelligent Crop Breeding with 3D Printed Sugar Beet Plant
A team of German researchers are working to bring farming into the future by developing AI-assisted crop pipeline improvement. By using laser scanning and consumer-grade FDM 3D printing, they were...