US Researchers Create 3D Printing Filament from Recycled Cellulose Polypropylene

Share this Article

In this recently published study, ‘Recycled Cellulose Polypropylene Composite Feedstocks for Material Extrusion Additive Manufacturing,’ researchers from the US explain their findings in using not only composites but those made out of recycled material. Here, the focus is on using polypropylene reinforced with cellulose waste to create 3D printing filament for material extrusion additive manufacturing (MEAM).

With cellulose being more commonly used to strengthen thermoplastics, today, such composites can be helpful in applications such as decking, paneling, furniture, household goods, and more. Not only are they plentiful, but also affordable to use—and best of all, renewable. Such materials also offer strength, low-bulk density—along with less abrasion, meaning that products last longer. To date, many studies have centered around ABS and PLA composites; in fact, some have even included using materials like ground-up macadamia shells with ABS.

For this study, materials like wastepaper, cardboard, and wood flour were used for additives, with powders melted into filament and then printed into samples for testing, considering that mechanical properties could be affected due to filler, along with wettability.

“Strong particle–matrix interfacial adhesion can improve toughness due to efficient stress transfer between phases,” stated the researchers. “On the other hand, poor wetting can lead to debonding, plastic void growth, and shear banding mechanisms, which absorb energy and can improve toughness.”

The composites were created through pulverization, minimizing particles for better results in fabricating samples. The ingredients used for the composite were rather interesting too, in the form of Wegmans and Great Value yogurt containers, along with office printer paper, corrugated cardboard, and wood flour.

“Recycled polypropylene from yogurt containers was cleaned by rinsing with water, ethanol and drying in the air at room temperature. The labels were removed before cutting into pieces that could be fed into the paper shredder (Compucessory model CCS60075). Wastepaper and cardboard were fed through an identical cross-paper shredder,” explained the researchers.

Recycled PP and cellulose starting materials, powder, and filament generated from SSSP. (A) Waste paper, (B) rPP/WP SSSP powder, (C) rPP/WP filament, (D) rPP shreds, (E) rPP/CB SSSP powder, (F) rPP/CB filament, (G) wood flour, (H) rPP/WF SSSP powder, (I) rPP/WF filament. WP = waste paper, CB = cardboard, WF = wood flour.

While all the samples were 3D printed as planned, the researchers pointed out that clogging was an issue for some pieces when using the typical 0.5 mm nozzle. The team theorized that cellulose was responsible for the clogging due to some particles not ground finely enough. Cardboard and paper did not always remain sufficiently mixed either. 3D printing was performed on a Lulzbot Taz 6 3D printer, with a 100 °C bed temperature and a 220 °C nozzle temperature used.

“Sections along the length of a filament spool were examined by scanning electron microscope and thermogravimetric,” concluded the researchers. “The rPP/CB composites have a greater loading of cellulose compared to the commercial PP (cPP)/CB composites, but loading does not change significantly along the ca. 30 ft. examined. Further, weight percent remaining by TGA does not show significant differences in char along each respective filament.”

Ultimate tensile strength (hatched bars) and modulus (solid bars) of printed PP with 10 wt % cellulose. *, **, # significantly different from the respective control. WP = waste paper, CB = cardboard, WF = wood flour.

While 3D printing today offers a host of different materials to choose from as a whole, many are better when reinforced, meaning that composites are becoming increasingly more popular from copper metal to continuous wire polymers or continuous carbon, and more—even to include alternatives like wood and cork.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Ultimate tensile strength (hatched bars) and modulus (solid bars) of printed PP with 10 wt % cellulose. *, **, # significantly different from the respective control. WP = waste paper, CB = cardboard, WF = wood flour.

[Source / Images: [‘Recycled Cellulose Polypropylene Composite Feedstocks for Material Extrusion Additive Manufacturing’]

Share this Article


Recent News

HP Teams with New Balance and Superfeet for 3D-Printed Custom Insoles

The Top 10 SelfCAD Improvements of 2019



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Korea: 3D Printed Protection Suits for Senior Citizens

In the recently published ‘Developing Fall-Impact Protection Pad with 3D Mesh Curved Surface Structure Using 3D Printing Technology,’ authors Jung Hyun Park and Jeong Ran Lee once again prove our...

Sponsored

Top 5 Software Packages for 3D Printing

3D printing is a tough job. Although once learned, it does not seem too tricky. However, for beginners, it might not seem as friendly as various other new technologies. The...

3D Printing News Briefs: November 8, 2019

We’ve got plenty of business news for you in today’s 3D Printing News Briefs, starting with 3devo’s upcoming expansion to the United States. Optomec just shipped its 500th 3D printing...

Interview with Aaron Breuer, the CEO of SelfCAD

With perhaps only ten to twenty million people being proficient in CAD we can maintain that everyone could or should 3D print but the reality is that this isn’t in...


Shop

View our broad assortment of in house and third party products.


Services & Data

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!