Researchers Examine Effects of Gas Chemistry in Laser-based Powder Bed Fusion

IMTS

Share this Article

In ‘Influence of atmosphere on microstructure and nitrogen content in AISI 316L fabricated by laserbased powder bed fusion,’ the researchers take on the challenge of creating parts via laser‐based powder bed fusion (L-PBF) processes while examining the effects of protective gases.

The authors explain that L-PBF is advantageous to many industrial users worldwide—often through the use of metals like stainless steel. While exposure to nitrogen can increase the quality of a structure in a beneficial manner, if the levels are too high, the integrity of the 3D printed structure can be threatened.

Nitrogen ‘pickup’ is used for austenitic stainless steel, an alloy comprised of a crystalline structure. At temperatures of 900 °C there is ‘appreciative capacity’ for nitrogen in a solidified form. Exposure during processing to nitrogen gas not only results in better strength but ductility levels are not affected, and corrosion resistance also increases. When temperatures become too elevated, however, anti-corrosive properties may be negatively transformed.

Previous research has been performed regarding the amounts of porosity that would be caused by the ‘reactivity and solubility’ of nitrogen, as well as other combinations of the following:

  • Argon
  • Nitrogen
  • Helium
  • Hydrogen

With most research resulting in the conclusion that both argon and nitrogen promote density, the authors state that their assessments did not include any chemical or structural examination.

“In the present work the influence of the gas atmosphere on the quality of LPBF parts is addressed. To this end, two batches were made: one batch was manufactured in Ar gas; a second batch in N2 gas. The microstructure, microhardness, and nitrogen contents of the powder and the L-PBF parts of are investigated,” state the authors.

Material for the study included AISI 316L stainless steel powder from  LPW Technology with a particle size of (53  ±  15)  µm and a certified composition (in wt %): Fe = Bal., C = 0.020, Si = 0.70, Mn = 0.76, P = 0.008, S = 0.004, Cr = 17.7, Ni = 12.6, Mo = 2.32, Cu = 0.02, N = 0.09, O = 0.02. The team used fresh powder each time.

 

Schematics of the build chamber in the used PBF system from Aurora Labs. Placement of the three specimens is shown approximately.

During the experiment, the team noted that the nitrogen content was reduced to (0.086 ± 0.007) wt %. They stated that this indicated desorption of nitrogen from the molten powder during the L‐PBF‐Ar process and could also cause loss of nitrogen.

“The microstructure of both L-PBF 316L specimens was fully austenitic, with a cellular structure. The specimen manufactured in Ar had a more heterogeneous structure, possibly associated with an increased heterogeneous nitrogen distribution,” concluded the researchers.

“Nitrogen has a paramount importance in the alloying of stainless steel, as even minor changes will have a major impact on the mechanical and electrochemical properties. Future works will therefore focus on the influence of powder reuse with regard to nitrogen content and establishing a method for choosing the atmosphere chemistry in which the nitrogen content in the printed part is controlled.”

Nitrogen content of AISI 316L powder, L‐PBF build in argon and L‐PBF build in nitrogen. Dotted line marks the min. nitrogen content for AISI 316N[9] and the max. nitrogen content for the powder as specified by the supplier, LPW technologies.

Laser-based powder bed fusion techniques are popular in the 3D printing and AM arena today, leaving many researchers and engineers to delve into the science of materials, chemicals, and often, metals—including studies into fault detection processes, metal alloys, and even studies regarding the prediction of mechanical performance.

Macrograph made by stitched micrographs of L‐PBF 316L build
in Ar gas (a) and in N2 gas (b). Etched in 4% HNO3 1% HF sol. for 16 min.

[Source / Images: ‘Influence of atmosphere on microstructure and nitrogen content in AISI 316L fabricated by laserbased powder bed fusion’]

Share this Article


Recent News

3D Printing Financials: Prodways’ Q1 2024 Revenue Drop and Accounting Overhaul

Equispheres Secures C$20M for Metal 3D Printing Powders with Automotive Backing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Purdue Teams Power 3D Printed Rocket Chamber with Elementum 3D’s Aluminum Powder

Self-landing rockets essentially changed the space sector, transforming it from a niche research segment to fully fledged industry. To continue driving the technology forward, new generations of engineers are expanding...

BMW Targets WAAM 3D Printed Test Parts for Vehicles Next Year

The BMW Group has long been a user and innovator in additive manufacturing (AM) technology, dating back nearly 35 years. Nevertheless, the auto giant never fails to impress in the...

Blue Laser Firm NUBURU Explores Strategic Alternatives Amid NYSE Compliance Challenges

In a strategic move reflecting the current macroeconomic landscape, NUBURU, Inc. (NYSE American: BURU), a pioneer in industrial blue laser technology, has announced its decision to explore a wide array...

Elementum 3D Receives $2.875M to Lead Aluminum 3D Printing Research

Elementum 3D, a Colorado-based additive manufacturing (AM) company specializing in metals development, has been awarded $2.875 million by Manufacturing USA institute America Makes for the “Proliferation of AM Aluminum Alloy...