Research Centered Around 3D Printed Strain Sensors Continues

Share this Article

Researchers continue to study strain sensors, a growing area of interest as 3D printing and electronics continue to meld and expand, with the need for sensors and monitors in many different applications. The authors outline their findings further in ‘Dynamic Measurements Using FDM 3D Printed Embedded Strain Sensors,’ explaining why sensors are so necessary for technology today such as smart structures.

As ‘intelligent systems’ continue to progress in sophistication, they must be monitored in more sophisticated ways too. The authors are aware that strain sensors are critical for aerospace and medical components—especially when lives could be at stake—and much previous research has been performed by scientists and engineers regarding sensors and applications such as:

  • Soft robotics
  • Water distribution systems
  • 3D printed, bionic ears
  • Home healthcare devices

“Strain measurements are essential for monitoring mechanical systems, from both the static and the dynamic points of view,” state the researchers.

They point out, however, that there are limitations in attempting to use FDM 3D printing in the fabrication of sensors—resulting in erratic outcomes with the material, problems with extrusion, and other issues causing defects.

“However, its current and future potential are greater than its drawbacks,” state the researchers, giving mention to the connection between conductivity and piezoresistive response to FDM 3D printed sensors.

Three different samples were created, using an Ultimaker 3 dual extruder, with PLA, tested with a focus on the piezoresistive principle: ‘the capability of an electrically conductive material to change its resistance if a mechanical deformation occurs.’

(A–C) The geometry of Samples A–C: CAD model of the samples and sensors and the 3D-printed manufactured specimens. The non-sensing material is PLA for Samples A–C, even if the colors are different.

Overall, the researchers noted that the sensors created via FDM 3D printing could perform dynamic strain measurements in this study, up to 800 Hz. This was performed with the use of both a high-dynamic-range accelerometer and a numerical model.

Dynamic embedded sensors’ validation, comparing experimental and numerical (FEM model) FRF amplitudes | HeF(f) |: (a) experimental and numerical (FEM) strain FRF amplitudes | HeF(f) | comparing for Samples B and C in the range 5 Hz to 200 Hz; and (b) experimental and numerical strain FRFs (amplitudes) in the range 5 Hz to 800 Hz for Sample C (analogous results for Sample B).

“The theoretical model, validated by experimental data, was used to demonstrate the feasibility of calibrating the integrated strain sensors using quasi-static tests, also taking into account the temperature effects, which were revealed to be Sensors 2019, 19, 2661 13 of 15 negligible in their amplitude (RA) variation. The hypothesis of a zero-order model for the sensors was confirmed up to 800 Hz by the comparison between experimental and numerical FRFs in terms of strain,” concluded the researchers.

“The contribution of electromagnetic interference to the strain noise floor was researched. Although the compensation of electromagnetic noise performed by printing one sensor on the neutral plane of a beam was researched, it was not found to be effective. Additionally, negligible piezoresistive nonlinearities in the quasi-static and dynamic measurements for the 3D-printed sensors were found if the sensor is in the linear-response region of the structure. This work paves the way for new applications of 3D-printed piezoresistive embedded sensors in which dynamic measurements are fundamental.”

Sensors are required for so many different electronic operations today, and with 3D printing, researchers are able to come up with affordable new ways to monitor machinery and other devices, innovating with different strain sensors, embedding them in metal, and even using them in medical applications like prosthetics.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Cantilever-beam experimental set-up for dynamic measurements: (a) Sample A; (b) Sample B; and (c) Sample C.

[Source / Images: ‘Dynamic Measurements Using FDM 3D Printed Embedded Strain Sensors’]

 

 

 

 

Share this Article


Recent News

ExOne Announces New Entry-Level Metal 3D Printer with Concept Sketch, Launches New Capability to Print Particulate Binders

With BCN3D’s New Epsilon and Sigma 3D Printers, How Will the Desktop Market Fare?



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3DPOD Episode 34: Eric Pallarés, BCN3D and Professional Desktop 3D Printing

In this episode, Max and I spoke with Eric Pallarés of BCN3D. BCN3D is a Barcelona-based material extrusion 3D printing company. Having started on the desktop, BCN3D now is moving...

3D Printing News Briefs, August 30, 2020: Roboze, BCN3D & CREA3D, 3D Systems, ASTM International

We’re covering 3D printing business stories in today’s 3D Printing News Briefs, including investments, partnerships, industry executives, and annual reports. Federico Faggin, who invented the microprocessor, is investing in Roboze,...

Mondragon Group Bets on 3D Printing, Invests in BCN3D with Spanish Government

Spanish manufacturer of desktop 3D printers BCN3D announced a new funding round totaling €2.8 million. The round was led by Spain’s national innovation agency, CDTI, and the Mondragon Group, one...

3D Printing News Briefs, June 28, 2020: Autodesk, Sinterit, BCN3D Technologies

In today’s 3D Printing News Briefs, we’re talking about software and hardware. First, Autodesk has added a new generative design extension. Sinterit has made some changes so its printers are...


Shop

View our broad assortment of in house and third party products.