Aspect Biosystems Heads $2.2 Million Project with New Microfluidic 3D Bioprinting Platform

Share this Article

Aspect Biosystems, headquartered in Vancouver, has created a new microfluidic 3D bioprinting platform to further the progress of tissue engineering. In a collaboration with Merck, GSK, and McGill University’s Goodman Cancer Research Centre, they hope to continue 3D printing impacts in the ever-expanding medicine realm through allowing for better accuracy and screening of immuno-therapeutics that target challenging and deadly diseases like breast cancer.

This powerful partnership comprises a project worth $2.2 million, backed also with contributions by CQDM and the Canadian Cancer Society.

“As a founding member of the CQDM, Merck Canada is proud to support this investment in R&D with the objective of potentially improving patient response to some treatments for breast cancer patients,” said Anna Van Acker, president and managing director, Merck Canada Inc. “We believe that collaboration between public sector, academia, patients, NGOs, industry and government will lead to innovations that improve patient outcomes and today’s announcement is yet another example of the modern R&D model we are pursuing in Canada.”

These organizations have committed a substantial amount of funds due to their dedication to research of therapeutic targets and immuno-oncology therapeutics, with Morag Park and her team at Goodman Cancer Research Centre and McGill University Health Centre partnering with Aspect Biosystems. Their focus in bioprinting is to create breast cancer cells and tumors using biological material from patients.

“We are thrilled to partner with global biopharmaceutical leaders, GSK and Merck, as well as world-class groups at McGill and the Canadian Cancer Society that are dedicated to finding cures for cancer,” said Tamer Mohamed, chief executive officer, Aspect Biosystems. “We are deeply committed to forming strategic partnerships to accelerate the impact of our technology on patient outcomes.”

“In addition to our partnerships and programs focused on developing tissue therapeutics for regenerative medicine, our 3D bioprinting platform is also enabling breakthroughs in therapeutic discovery. This public-private partnership is a great example of combining state-of the-art technology and science with world-class expertise and resources to accelerate the discovery and development of new therapies for patients.”

“The 3D printer remakes this tumor microenvironment in the same manner as it exists in the patient,” said Morag Park of the Goodman Cancer Research Centre Director. “It’s this reconstituted tumor that allows us to test new drugs and therapies.”

These advances will allow for further strides in research and evaluation of anti-cancer drugs and how well patients respond to varying treatments.

“We are excited to work with Aspect’s innovative team to combine our bio-bank of patient-matched tumor-associated cells with Aspect’s microfluidic 3D bioprinting technology to create programmable 3D tumor models,” said Dr. Morag Park, director, Goodman Cancer Research Centre at McGill University. “Solid tumor growth is regulated by complex interactions of tumor cells with the tumor microenvironment. This collaboration seeks to create a powerful new platform for studying these critical interactions in a human-relevant environment and, ultimately, accelerate the discovery and development of novel cancer immunotherapies.”

Microfluidics are the common subject of research today as students explore how these systems are commonly used today, as well as being used in combination with miniaturization and innovative new scaffolds for tissue engineering. Find out more about how Aspect Biosystems is furthering the development of oncology therapeutics here.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Aspect Biosystems; CTV News Montreal]

 

 

Share this Article


Recent News

CEO Meddah Hadjar to Leave SLM Solutions

DIY Air Filtration System Improves Ultimaker S3 3D Printer Safety



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Soft, Sensitive Robotic Gripping Fingers Made with Multi-material 3D Printing

Soft grippers enable robots to manipulate delicate objects, but this doesn’t necessarily mean that they’re safe to use around living organisms, such as elderly people, so researchers continue working to...

3D Printed Insoles Absorb Sweat to Power Electronics

Sweating is not really pleasant, but it’s a normal, natural way for the human body to regulate body temperature by decreasing thermal stress, which can occur for a number of...

RIZE Announces 2XC 3D Printer as Fifth UL GREENGUARD-Certified Product

Early this summer, RIZE, Inc. debuted its professional desktop RIZE 2XC, an adaptive 3D printer developed collaboratively with South Korean 3D printer manufacturer Sindoh as part of the RIZIUM Alliance that’s...

3D Printing News Briefs, December 10, 2020: Velodyne Lidar & Local Motors, Philament, PostProcess & Orthodent, Keyshot & Stratasys

In today’s 3D Printing News Briefs, we’re talking about business, materials, dental, and software. Velodyne Lidar has announced a multi-year sales agreement with Local Motors. Filamania has launched its Philament...


Shop

View our broad assortment of in house and third party products.