In ‘Structural Color 3D Printing By Shrinking Photonic Crystals,’ international researchers explain that while inspiration may arise from nature, in displays of photonic crystals offering colorful patterns on everything from butterflies to weevils, it is still extremely challenging to 3D print color at the microscopic scale.
3D printing at the nanoscale is certainly a heavily-explored realm today, from experimentation with glass/ceramics to complex metal structures to scalable systems, but commercial printers are not yet able to create color of the type required for patterning photonic crystal structures ‘with the requisite ~300 nm lattice constant to achieve photonic stopbands/ bandgaps.’
The researchers present a new method for fabrication of photonic crystals with a 5x reduction in lattice constants. With this technique, the researchers were able to 3D print microscopic objects, exemplified by their Eiffel Tower model, measuring only 39-µm tall with a color pixel size of 1.45 µm:
“To the best of our knowledge, this is the first demonstration of a full-color 3D printed object based on dielectric structural colors instead of dyes,” state the researchers, who foresee this technology as having potential also for applications in creating photonic optical devices and metasurfaces—to include circuits-on-a-chip, and other polarizers.
The heating process was beneficial in this technique in offering the proper amount of shrinkage for some of the structures (some samples failed, losing shape completely), along with altering the shape of the laser writing spot:
“The fabrication reliability and reproducibility for smaller structures is also improved as we can pattern mechanically robust structures within a larger process window. This concept is similar to that demonstrated in 2D with Shrinky Dinks, where structures printed using a simple desktop printer were later heat shrunk to micron length scales,” state the researchers.
In 3D printing sample objects for the study, the research team fabricated numerous woodpile structures with a range of laser powers. Without heating, they were colorless, but after heating, the samples shrunk and became colorful.
The Eiffel Tower sample shows off the ability to 3D printing both ‘arbitrary and complex’ objects microscopically, with lattice constants chosen by the researcher’s post-shrinkage.
“The tower was attached to the substrate at the tip and the fabricated 3D structures are observed from the side with an optical microscope,” state the researchers.
“The woodpile structures are structurally stable and can be used as building blocks for a variety of models. To demonstrate the versatility of the method, a 20 µm tall Chinese character for luck “福” was printed in structural red.”
The authors explain that objects can also be 3D printed in multiple colors, which they demonstrated not only with their print of the Eiffel Tower, but also the ArtScience Museum in Singapore.
“The heat-induced shrinking method enables one to readily exceed the resolution limit of a 3D DLW system to print 3D objects that exhibit colors due to the underlying photonic bandstructures of the constituent lattices,” concluded the researchers. The good agreement between photonic bandstructure calculations and experimental results with no fitting parameters allows us to clearly identify slow light modes and stopbands as the source of spectral peaks, giving rise to a full range of colors.
“Our work demonstrates the ability to produce structural color within complex 3D objects at will and could be extended to developments in compact optical components and integrated 3D photonic circuitry that operate in the visible to NIR wavelengths.”
What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.
Subscribe to Our Email Newsletter
Stay up-to-date on all the latest news from the 3D printing industry and receive information and offers from third party vendors.
You May Also Like
Tekna Introduces Coarse Titanium Powders for Faster 3D Printing
Tekna is introducing coarse Ti-64 titanium powders to the market, aimed at laser powder bed fusion (LPBF) users. These larger powders could make a significant difference. Designed for 60 μm...
QIDI Q1 Pro 3D Printer Review: A Heated Value
Disclosure: The Q1 PRO was provided to me by QIDI free of charge for the purpose of this review. I have not received any other compensation. All opinions expressed are...
3D Printing News Briefs, September 21, 2024: Process Monitoring, Earmolds, & More
We’re taking care of business first in today’s 3D Printing News Briefs, as Sevaan Group has launched an additive manufacturing service and Farsoon Europe is partnering with MostTech to expand...
Divide by Zero Releases $500 Altron 3D Printer with Advanced Features
Indian original equipment manufacturer (OEM) Divide by Zero Technologies has released its latest 3D printer, the Altron. Priced at $500, the machine features spaghetti detection, automatic calibration, nozzle height detection,...