Polish Company CD3D Opens Largest 3D Bioprinting Cluster in Europe

Share this Article

Centrum Druku 3D, or CD3D, is the largest online website devoted to 3D printing technology in Poland. Launched in 2013 with an online portal, the company’s operations are based on two important pillars: providing knowledge in the 3D printing field, and scientific-research and R&D activities in the medical and pharmaceutical sciences. In 2014, CD3D held Poland’s first 3D printing awards, and this week launched a new medical project – the largest 3D bioprinting center in Europe.

The Open 3D Bioprinting Cluster launched in Lodz at the Bionanopark, which is one of the country’s largest laboratory complexes and works on multiple science and research projects in the medicine and biotechnology fields, including computational chemistry, 3D printing, biochemistry, and medical implants. CD3D, under the CD3D Medical brand, is the creator of the cluster, and will be operating it together with the Laboratory of Molecular and Nanostructured Biophysics at the complex, which also includes an incubator and conference center. In addition to bioprinting, CD3D Medical also offers SLA, FDM, and DMP 3D printing technologies.

21 3D bioprinters, created by CD3D and called SKAFFOSYS for ‘scaffold systems’, make up the cluster, and according to Pawel Slusarczyk, a Project Director at CD3D, they are the first Polish bioprinters.

The system uses a 5 ml syringe as a printhead, and performs extrusion mechanically, as semi-liquid, gel, and hydrogel materials are applied to a laboratory pan that’s been affixed to a working table. The SKAFFOSYS Lite 3D bioprinter features a 170 x 125 x 80 mm build area, with a process accuracy of 0.2 mm, and can also complete bioplotting. As more challenges are created over time by bioprinting projects, CD3D will expand the SKAFFOSYS Lite by adding new functionalities and modules.

Due to the teamwork between the Bionanopark and CD3D Medical, scientists are able to use additive bioprinting to complete comprehensive research and development projects in the biomedical engineering field. Under the close supervision of CD3D specialists and scientists from the Laboratory of Molecular and Nanostructured Biophysics, laboratories at the Bionanopark can now successfully complete, according to the website, “biochemical, biological and molecular research at virtually any stage of the creation of three-dimensional structures.”

The reason the 3D Bioprinting Cluster is so important is due to its open nature. We use 3D bioprinted structures for a myriad of purposes, from growing biological material on printed scaffolds and creating composite materials to researching alternative food sources and creating, studying, and testing out new types of biocompatible materials. So the fact that this large, new cluster for 3D bioprinting is open means that other external entities can use its important resources to complete tasks such as commissioning a comprehensive scientific and research service.

The partners and customers of the new Open 3D Bioprinting Cluster in Poland can now rest assured that the comprehensive service will make it possible to outsource scientific research projects to all of the laboratories in the Bionanopark.

What do you think? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: CD3D]

Share this Article


Recent News

What is Metrology Part 21 – Getting Started with Processing

Analyzing & Solving 3D Printing Issues with Microfluidics



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Multimaterial 3D Printing Filaments for Optoelectronics

Authors Gabriel Loke, Rodger Yuan, Michael Rein, Tural Khudiyev, Yash Jain, John Joannopoulous, and Yoel Fink have all come together to explore new filament options, with their findings outlined in...

Germany: Two-Photon Polymerization 3D Printing with a Microchip Laser

Laser additive manufacturing technology is growing more prevalent around the world for industrial uses, leading researchers to investigate further in relation to polymerization, with findings outlined in the recently published...

3D Printing Polymer-Bonded Magnets Rival Conventional Counterparts

Authors Alan Shen, Xiaoguang Peng, Callum P. Bailey, Sameh Dardona, and W.K Anson explore new techniques in ‘3Dprinting of polymer-bonded magnets from highly concentrated, plate-like particle suspension.’ While magnets have...

South Africa: FEA & Compression Testing of 3D Printed Models

Researchers D.W. Abbot, D.V.V. Kallon, C. Anghel, and P. Dube delve into complex analysis and testing in the ‘Finite Element Analysis of 3D Printed Model via Compression Tests.’ For this...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!