Made in Space: Proving Further 3D Printing & Robotics Capabilities with Archinaut System

Share this Article

We hear a lot of talk these days from global aerospace players about how 3D printing and robotics will further space travel, assist in further exploration of the Moon, colonize Mars, and employ futuristic plans that sound like they will allow many of us to live out fantasies not unlike those we’ve enjoyed during sci-fi movies (just leave out the apocalyptic darkness and terrifying space monsters please).

Now, Made in Space is continuing to live up to their name in regards to technical functionality in space, having just reached another achievement with Archinaut, part of an ongoing collaboration with NASA to further self-sustainability in space through construction of satellites and even entire spacecraft while away from Earth. In connection with their NASA Tipping Point contract, they have further proven AM and robotics capabilities in testing, in cooperation with the Archinaut Technology Development Project (ATDP), funded by NASA’s Space Technology Mission Directorate (STMD).

The system was evaluated in thermal vacuum (TVAC) testing last fall in Redondo Beach, California at Northrop Grumman’s Space Park facility, during simulation of thermal and pressure environment of a satellite in Low Earth Orbit (LEO). This is just one more critical step toward making the Archinaut system ready for manufacturing parts in space, using dynamic programs like the PowerKit system, able to deploy a 2kW power system on a 150 kg ESPA-class satellite—exhibiting power five times that of current systems. Other deployment systems include an antenna that can perform major duties like exploring space, along with managing telecommunications and remote sensing.

“This technology will contribute to a more sophisticated low earth economy and lay the groundwork for more advanced commercial utilization of space,” said Andrew Rush, President & CEO of Made in Space.

MIS has even set a record with their extended additive manufacturing technology (ESAMM), capable of making structures longer than even the machine itself, with a Guinness World Record set at 37.7 meters long. In testing, MIS was also able to demonstration successful operation of ESAMM in a thermal vacuum chamber.

Led by Made in Space, other partners such as Northrop Grumman are providing integral development to the project also, mainly in systems integration. Oceaneering Space Systems was responsible for the robotic arm which will be so integral to the creation of sizeable structures built in space, along performing necessary upgrades. The robotics system can also be made responsible for doing repairs, along with small sat integration when payload retrievals and installations are necessary in space. During testing, the MIS team was able to show off the functionality of features like the following:

  • Autonomous reversible connection
  • Joining techniques of 3D printed parts
  • Nodes and trusses for robotic arm
  • End effector for assembly operations

“We are very proud of our team for achieving this critical proof point that ultimately lines us up for operational missions with customers in both government and commercial sectors,” Rush said. “We look forward to the next steps of preparing Archinaut-enabled missions for flight.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source /Images: Made in Space press release]

Made in Space delivered the first 3D printer to the International Space Station.

Share this Article


Recent News

3D Printing Webinar and Virtual Event Roundup, September 27, 2020

3D Printing News Briefs, September 26, 2020: Nanoscribe, Azul 3D, Arburg



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, September 19, 2020: Relativity Space, Farsoon Technologies, Johnson & Johnson

In today’s 3D Printing News Briefs, the co-founder of Relativity Space is leaving his role of CTO, and Farsoon has delivered its largest order of plastic 3D printers. Finally, Johnson...

UpNano’s Nano 3D Printing Achieves Centimeter-Scale with High Resolution in Minutes

Vienna, Austria-based company UpNano, which is commercializing an ultrafast, nano and microscale 3D printing system called the NanoOne, has added even more laser power to its solution. Combine that with...

3D Printing and COVID-19: DreamLab Under Investigation Due to Customer Complaints

While many additive manufacturing operations may have appeared to be booming earlier in the spring, 2020 is turning out to be a bad year for DreamLab Industries. This is true...

Fundamental VR is Challenging Traditional Medical Training in the Age of COVID

Technologists and entrepreneurs Richard Vincent and Chris Scattergood were part of the mobile phone market for decades, creating innovative businesses with disruptive technologies. Then, in 2014, they decided to reimagine...


Shop

View our broad assortment of in house and third party products.