Additive Manufacturing Strategies

Researchers Explore Melt Electrospinning & 3D Printed Scaffolds for Guided Bone Regeneration

ST Medical Devices

Share this Article

Recent research by scientists at University Hospital Würzburg yields new insight into the uses of 3D printing in creating scaffolding for oral bone regeneration, offering results in ‘Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration – a pilot study in vitro.’

The use of scaffolds has been rife with challenges, and especially in guided bone regeneration (GBR). Problems include issues with handling in clinical environments, erratic degradation, lack of stability in cell growth, and more. The researchers in this case embarked on a study of scaffolds created through melt electrospinning writing (MEW) and consequent 3D printing, creating complex scaffold geometrics that can be fabricated specifically to bone tissue requirements—usually in maxillofacial applications.

“In general, membranes that are currently used for maxillofacial applications, such as GBR, can be broadly divided into resorbable and non-resorbable categories,” state the researchers. “Membranes of the latter category offer good biocompatibility and high mechanical stability. Thus, they suit very well as placeholders and barriers in GBR. On the other hand, non-resorbable membranes require a second operation for their removal, pose a risk of mucosal perforations due to their high level of stiffness and therefor go along with higher morbidity, increased costs and increased expenditure of time.”

Design of MEW device and schematic of the MEW process of the scaffolds

Electrospinning offers a comparatively easy way to make scaffolds necessary to biomedical applications, employing a charged polymer jet pushed out from a spinneret and ‘drawn’ toward an area well fibers begin to form into a structure. For creating polymers, both solution electrospinning and MEW are used.

MEW allows the operator to place fibers exactly, and without chemicals and solvents, meaning there is also no potential for solvents to be left in the scaffold.

“Process parameters allow for a controlled fiber placement, which makes the computer-aided design- and manufacturing (CAD/CAM) of 3D scaffolds feasible. Cell growth on scaffolds can thus be optimized by varying pore sizes and interconnectivity,” explain the researchers.

All scaffolds for the study were made of medical-grade PCL and the researchers were able to use a MEW device that was customized by the Department for Functional Materials in Medicine and Dentistry Würzburg University Hospital. Cells were assessed and quantified, and then washed, sealed, and neutralized. Testing revealed good viability and proliferation.

“The architecture of scaffolds, size, morphology and interconnectivity play an important role in the sufficient regeneration of bone,” state the researchers.

“Such scaffolds/membranes would prove beneficial, especially in the field of oral and maxillofacial surgery, where impaired wound healing in the alveolus region oftentimes poses problems. Furthermore, a pre-implantological use of these membranes seems suitable. In atrophic regions of the alveolus in which elaborate bone augmentation is necessary, coverage with membranes that additionally promote bone healing should prove a promising approach to improved GBR.”

End results showed not only good viability but also protein concentration, and cell number.

“These well-defined 3D scaffolds consisting of medical-grade materials optimized for cell attachment and cell growth hold the key to a promising new approach in GBR in oral and maxillofacial surgery,” concluded the researchers.

Schematic of cell culture experiments on the scaffolds

3D printing has lent so much to the world of innovation, from aerospace to fashion and beyond, but this technology has had significant impacts in medicine, and in areas that are vital but that many of us rarely think about or even know about, such as scaffolding.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Cell count of MG63 cells seeded on MEW box structured PCL scaffolds of different box-sizes after 2, 3 and 4 days of cell culture

[Source / Images: Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration – a pilot study in vitro]

 

Share this Article


Recent News

Kornit Digital Buys Tesoma, Expanding Digital Textile Production

Customized Vehicles, On-Site Medical 3D Printing, and Green Lasers—All at TIPE 2022



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing People: A Dialogue Beyond Industry at TIPE 2022

Women in 3D Printing (Wi3DP) has pulled off another virtual event show coup. After an immensely successful inaugural event in 2021, the non-profit has hosted an even bigger 2022 event. And...

3D Printing Webinar and Event Roundup: January 16, 2022

We’re back in business this week with plenty of webinars and events, both virtual and in-person, starting with the second edition of the all-female-speaker TIPE 3D Printing conference. There are...

Women in 3D Printing’s Posts Agenda for TIPE Conference and Virtual Career Fair

This January 18-20, Women in 3D Printing (Wi3DP) is back for the second time in a row with its TIPE 3D Printing Conference and Virtual Career Fair. Like its inaugural...

Ford and Czinger to Give Automotive 3D Printing Keynotes at AMUG 2022

As the 2022 AMUG Conference approaches, the Additive Manufacturing Users Group (AMUG) has announced its keynote speakers. Headlining the event, set to take place in Chicago, Illinois from April 3-7, are Kevin...


Shop

View our broad assortment of in house and third party products.