University of Michigan Researchers Develop New Ultrafast 3D Printing Technique: Two-Color Irradiation

IMTS

Share this Article

[Image: Evan Dougherty/Michigan Engineering]

University of Michigan researchers have developed a new vat polymerization 3D printing technique that produces objects at up to 100 times faster than current 3D printing techniques, as detailed in a paper entitled “Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning.” 3D printing has not yet fully lived up to its potential as a small-batch production method because it, particularly FFF 3D printing, just hasn’t been fast enough to meet typical production schedules of a week or two.

“Using conventional approaches, that’s not really attainable unless you have hundreds of machines,” said Timothy Scott, University of Michigan Associate Professor of Chemical Engineering who co-led the development of the new 3D printing approach with Mark Burns, the T.C. Chang Professor of Engineering at the University of Michigan.

Their technique uses two lights to control where the resin hardens and where it remains fluid, allowing them to solidify the resin in more intricate patterns. They can make a 3D bas-relief in one shot rather than in multiple layers.

“It’s one of the first true 3D printers ever made,” said Burns.

The researchers’ approach overcomes limitations of earlier vat polymerization 3D printing efforts. In particular, the resin would tend to solidify on the window that the light shone through, halting the print job. An early solution was a window that lets oxygen through, stopping the solidification and leaving a film of fluid that allows the printed object to be pulled away. Because this gap is so thin, however, the resin must be highly liquid in order to flow between the newly solidified part and the window as the part is pulled up. This has limited vat 3D printing to small, relatively fragile products.

But by replacing the oxygen with a second light to stop the solidification process, the Michigan researchers were able to produce a much larger gap between the object and the window, allowing resin to flow in thousands of times faster.

By creating a relatively large region where no solidification happens, thicker resins – some with strengthening powder additives – can be used to 3D print more durable objects. The technology also circumvents one of the biggest issues of FFF 3D printing, which is poor layer adhesion and subsequent weakness.

“You can get much tougher, much more wear-resistant materials,” said Scott.

In existing systems, there is only one reaction – a photoactivator hardens the resin wherever the light shines. In the University of Michigan system, however, there is also a photoinhibitor, which responds to a different wavelength of light. Rather than just controlling solidification in a 2D plane, the researchers can pattern the two kinds of light to harden the resin at practically any 3D place near the illumination window.

The University of Michigan has filed three patents for the technology, and Scott is working on launching a startup based around it. This new approach could be a huge step for 3D printing, allowing it to be used much more effectively in production settings.

Authors of the paper include Martin P. de Beer, Harry L. van der Laan, Megan A. Cole, Riley J. Whelan, Mark A. Burns and Timothy F. Scott.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

World’s Largest Polymer 3D Printer Unveiled by UMaine: Houses, Tools, Boats to Come

Changing the Landscape: 1Print Co-Founder Adam Friedman on His Unique Approach to 3D Printed Construction



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Profiling a Construction 3D Printing Pioneer: US Army Corps of Engineers’ Megan Kreiger

The world of construction 3D printing is still so new that the true experts can probably be counted on two hands. Among them is Megan Kreiger, Portfolio Manager of Additive...

Featured

US Army Corps of Engineers Taps Lincoln Electric & Eaton for Largest 3D Printed US Civil Works Part

The Soo Locks sit on the US-Canadian border, enabling maritime travel between Lake Superior and Lake Huron, from which ships can reach the rest of the Great Lakes. Crafts carrying...

Construction 3D Printing CEO Reflects on Being Female in Construction

Natalie Wadley, CEO of ChangeMaker3D, could hear the words of her daughter sitting next to her resounding in her head. “Mum, MUM, you’ve won!” Wadley had just won the prestigious...

1Print to Commercialize 3D Printed Coastal Resilience Solutions

1Print, a company that specializes in deploying additive construction (AC) for infrastructure projects, has entered an agreement with the University of Miami (UM) to accelerate commercialization of the SEAHIVE shoreline...