Testing a New Type of Functional Custom 3D Printed Prosthetic Finger

Share this Article

With all of the advances being made in the development of prosthetic devices, there is still a lack of affordable, customizable, functional finger prosthetics. In a paper entitled “Development of a Fully Actuated Realistic Finger Prosthesis for Proximal Phalanx Amputations,” a group of researchers describes how they developed a 3D printed finger prosthetic. They designed it as a skeletal finger that could be covered with a realistic silicone covering.

The prosthetic finger was modeled on a real pointer finger, with a diameter 10 mm smaller than the actual finger so that foams for shaping could be incorporated. For purposes of actuation, two bridges were added underneath the distal and medial segments. These function by extending underneath the adjacent finger to allow the patient to easily and naturally actuate the device. To ensure that the prosthetic returned to its resting extended state, places for elastic bands to be fixed via screw sets were made on either side of each joint.

Three tests were then performed to evaluate the design of the skeletal prosthetic. First, a fatigue test of the PIP joint was performed, using a modified medial segment and an MTS Insight Electromechanical Testing System. Two samples were fabricated from Formlabs Tough TOTL03 resin and printed on a Form 2 3D printer, using orthodontic bands for the extension mechanism. A clamp attachment and stage adapter were used to actuate the medial segment and hold the proximal segment stationary, respectively. The test was run for up to 1,000 cycles of full flexion and full extension.

A three point bending test was also performed to test the strength of the bond of the device to a simulated residuum cap. Five samples were 3D printed on an Ultimaker 3 3D printer using PLA.

“Samples were bonded to hardened PMMA residuum caps by using uncured PMMA,” the researchers state. “Testing was performed with an MTS Sintech 10G/L with three point bending fixtures. Samples were loaded until failure.”

Finally, a qualitative test was performed by having a volunteer (who was not missing any fingers) hold the device under a finger and attempting various simple gestures and tasks, such as picking up items.

“The fatigue tests did not show significant wear of the band or joint, but did highlight an unexpected issue,” the researchers continue. “Namely, the two samples tested failed before reaching the 1000 cycles because the screw holding the joint together came loose. The three point bending test gave an average force 282.66 N to induce failure, which was well above the literature values for forces exerted by fingers. The qualitative testing indicated that the finger bridges were comfortable and easy to use. In addition, a reasonable amount of dexterity is imparted, allowing the user to grasp various sized objects in both a full hand grip and between the fingertips. However, the range of motion of the device prevents the user from gripping small objects or making a fist.”

The researchers conclude that the use of finger bridges is a potentially viable method to provide people with missing fingers with “a subtle, convenient, functionalized and aesthetically realistic prosthetic.” Further research and refinement of the design is needed, however, such as determining the life cycle of the prosthetic.

Authors of the paper include Naren Chaudhry, Karl Fetsch, Bilin Loi and John Riley.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

Polyga Releases Professional Handheld H3 3D Scanning System

Lung Cancer Treatment: 3D Printing Molds for Personalized Airway Stents



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing and COVID-19, May 29, 2020 Update: Lessons for Going Forward

Companies, organizations and individuals continue to attempt to lend support to the COVID-19 pandemic supply effort. We will be providing regular updates about these initiatives where necessary in an attempt to ensure...

Featured

Virtual AM Medical Event: From Innovations to the Future of Additive Manufacturing in the Medical Industry

The American Society of Mechanical Engineers (ASME) hosted a first-of-its-kind event with experts discussing the instrumental role and impact of additive manufacturing (AM) on patient care. Originally set to take...

3D Printing Review in Drug Delivery Systems: Pharmaceutical Particulates and Membranes

Researchers from Egypt, India, and the UK are studying the role of 3D printing in drug delivery systems. Their findings are detailed in the recently released ‘Pharmaceutical Particulates and Membranes...

Sponsored

3DHEALS2020: A Not So Lonely Planet

Only a few weeks away from 3DHEALS2020, and I just got off the phone with one of our speakers, Dr. Ho, from NAMIC Singapore. Our brief interview reminded me just...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!