Additive Manufacturing Strategies

More Testing Shows that 3D Printer Emissions are Still Problematic

ST Medical Devices

Share this Article

3D printing, for all of its multitudes of benefits, also comes with some risks, which include the emission of ultrafine particles and gaseous pollutants. In a paper entitled “Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer,” a team of researchers tests eight different kinds of 3D printer filament for ultrafine particles and volatile organic compounds. All experiments were carried out on a Zortrax M200 3D printer, which has a single extruder, single heated plate, and sidewalls but no cover on the top. They tested ABS, ULTRAT, ASA, HIPS, PETG, GLASS (PETG mixed with fiber glass filings), PCABS and ESD.

The researchers 3D printed a small model that has been proposed by the National Institute for Standards and Technology (NIST). It consists of a square base and several small structures on the top and one side wall. The 3D printing was carried out in a stainless steel chamber with air set to 50% relative humidity and 23ºC. Air samples were taken to determine the chamber’s background concentrations of volatile organic compounds (VOCs) and very volatile organic compounds (VVOCs). The 3D printer was loaded into the chamber, and samples were taken again one hour after loading.

Once the 3D printing started, the particle filter sampling started and continued until the printing was finished. VOCs were sampled one and two hours after the printing started, and VVOCs were sampled an hour and a half into the printing process. A single test was performed for each type of filament, except for ABS, for which different filament colors and printing temperatures were also tested. Each 3D printing job lasted for about four hours.

“High particle SERs were found during printing with ASA (blue), ULTRAT (ivory), ESD (black) and PCABS (ivory),” the researchers state. “Printing with GLASS (transparent), HIPS (yellow), and PETG (black) was associated with lower particle SERs. The particle emissions for the ABS_Red filament were evaluated under different printing temperatures. In addition to the default printing temperature of 275 °C for ABS, we measured particle emission at four different temperatures of 230 °C, 240 °C, 250 °C and 260 °C, respectively. Particle SERs for ABS decreased with lower extruding temperatures from 260 to 230 °C.”

The VOCs detected during the tests included caprolactam, 4-tert-butylphenol, 2,4-di-tert-butylphenol and DEP. They also detected several semi-volatile organic compounds, or SVOCs. Styrene was the major VOC, follwoed by other substances including benzaldehyde and ethylbenzene. Only a few VVOCs, including acetaldehyde, 2-propanol, acrylonitrile and alcohol were detected at low concentrations.

“To the best of our knowledge, we have demonstrated for the first time that the particles emitted from a desktop 3D printer are semi-volatile and are composed of SVOCs which are mainly thermoplastic additives and cyclosiloxanes,” the researchers conclude. “Our data, which supplement results from previous studies, lead to the conclusion that, regarding particulate and gaseous emissions, 3D printing technology and the chemical composition of filaments still need to be optimized.”

As the researchers pointed out, other studies have also measured the emissions given off by 3D printers, although most studies have focused on ABS and PLA rather than such a wide variety of materials. All of the studies point to the same conclusion – 3D printing is far from ideal when it comes to emissions, and steps need to be taken to minimize these chemicals and make the technology safer.

Authors of the paper include Jianwei Gu, Michael Wensing, Erik Uhde and Tunga Salthammer.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Share this Article


Recent News

Kornit Digital Buys Tesoma, Expanding Digital Textile Production

Customized Vehicles, On-Site Medical 3D Printing, and Green Lasers—All at TIPE 2022



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing People: A Dialogue Beyond Industry at TIPE 2022

Women in 3D Printing (Wi3DP) has pulled off another virtual event show coup. After an immensely successful inaugural event in 2021, the non-profit has hosted an even bigger 2022 event. And...

3D Printing Webinar and Event Roundup: January 16, 2022

We’re back in business this week with plenty of webinars and events, both virtual and in-person, starting with the second edition of the all-female-speaker TIPE 3D Printing conference. There are...

Women in 3D Printing’s Posts Agenda for TIPE Conference and Virtual Career Fair

This January 18-20, Women in 3D Printing (Wi3DP) is back for the second time in a row with its TIPE 3D Printing Conference and Virtual Career Fair. Like its inaugural...

Ford and Czinger to Give Automotive 3D Printing Keynotes at AMUG 2022

As the 2022 AMUG Conference approaches, the Additive Manufacturing Users Group (AMUG) has announced its keynote speakers. Headlining the event, set to take place in Chicago, Illinois from April 3-7, are Kevin...


Shop

View our broad assortment of in house and third party products.