Cutting 3D Printing Costs with an Open Source Material Pelletizer

Share this Article

Good filament can be pricey, although the polymers the filament is made from aren’t that expensive. That’s the opening observation of a paper entitled “3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing.” The authors argue that the markup can be avoided by eliminating the process of creating filament and instead 3D printing directly from polymer granules. Fused granular fabrication (FGF), or fused particle fabrication (FPF), they point out, is held back by the lack of accessibility to low-cost pelletizers and choppers. So they developed their own open-source 3D printable pelletizer that can process both single thermopolymers as well as composites.

A single motor version of the system can be fabricated for only $185. All of the parts can be 3D printed with PLA or any other hard FFF thermoplastic, except for a few parts which are specifically designated to be printed with NinjaFlex. Step-by-step instructions are given for assembling the 3D printed parts.

After assembling the machine, the researchers tested it with a number of materials: both 1.75 and 2.85 diameter PLA and ABS, as well as PP, PETg and coffee-filled PLA. They also tested NinjaFlex, but found that it was too flexible to be processed.

A prototype Gigabot X 3D printer was used to 3D print the materials, and a self-designed “recyclebot” was used to create PLA filament from the pellets.

“The system could control the particle size by changing the speed,” the researchers state. “…The pellet production rate in kg/h is a function of speed of the motor and is linear: 0.5 kg/h at full speed with one motor, 0.25 at 100 rpm, and 0.125 at 50 rpm.”

Recycled material, such as PET and PP, can also be used from post-consumer materials, chopping up things like water bottles.

“To maintain acceptable mechanical properties, the recycled filament must be blended with virgin materials or reinforced with more robust materials,” the researchers explain. “Despite these drawbacks, a life cycle analysis of materials processed with a recyclebot found a 90% decrease in the embodied energy of the filament compared to traditional filament manufacturing.”

Thermopolymers that have been shown to be acceptable for the recyclebot process include PLA, HDPE, ABS and elastomers, as well as composites such as waste wood biopolymers and carbon fiber-reinforced plastics.

Future work includes replacing some parts such as the DC motor with cheaper alternatives, as well as working on geometric improvements that would allow flexible filaments such as NinjaFlex to be chopped.

“The system was successfully developed using open-source design strategies and fabricated using low-cost open-source 3-D printers,” the researchers conclude. “The invention provided high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer as well as for recyclebot reformulation of 3-D printing filament. It has a 0.5 kg/h throughput with one motor,and a 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully 3-D printed directly via FGF, as well as indirectly after being converted into high-tolerance filament in a recyclebot.”

Authors of the paper include Aubrey L Woern and Joshua Pearce.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

New Partnership: BEGO’s Dental Materials Allow Formlabs Customers to 3D Print Crowns & Bridges

Kentucky’s Somerset Community College 3D Prints in Metal on Modified FDM 3D Printers that Cost $600 Each



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

5 3D Printing for Agriculture Applications

Agriculture stands to gain more from technology than many other industries. Farming is critical to both an individual farmer’s livelihood and to the entirety of society. As such, everyone benefits...

CIA’s In-Q-Tel Invests in Markforged

Boston-based startup Markforged is growing rapidly, pulling in a whopping $82 million investment in March 2019. Now, the 3D printer manufacturer is getting some additional funds, though this time the...

Ti6Al4V in Selective Laser Melting: Analysis of Laser Polishing Techniques

Chinese researchers are expanding on new materials and technology for improving surface quality in metal 3D printing, outlining their findings in ‘Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting.’...

Tennessee Researchers Analyze Low-Cost Metal 3D Printing with Composites

Tennessee researchers have come together to pursue a more in-depth look at the science of 3D printing with metal, outlining their findings in the recently published ‘Dimensional Analysis of Metal...


Shop

View our broad assortment of in house and third party products.


Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!