Additive Manufacturing Strategies

Cutting 3D Printing Costs with an Open Source Material Pelletizer

ST Medical Devices

Share this Article

Good filament can be pricey, although the polymers the filament is made from aren’t that expensive. That’s the opening observation of a paper entitled “3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing.” The authors argue that the markup can be avoided by eliminating the process of creating filament and instead 3D printing directly from polymer granules. Fused granular fabrication (FGF), or fused particle fabrication (FPF), they point out, is held back by the lack of accessibility to low-cost pelletizers and choppers. So they developed their own open-source 3D printable pelletizer that can process both single thermopolymers as well as composites.

A single motor version of the system can be fabricated for only $185. All of the parts can be 3D printed with PLA or any other hard FFF thermoplastic, except for a few parts which are specifically designated to be printed with NinjaFlex. Step-by-step instructions are given for assembling the 3D printed parts.

After assembling the machine, the researchers tested it with a number of materials: both 1.75 and 2.85 diameter PLA and ABS, as well as PP, PETg and coffee-filled PLA. They also tested NinjaFlex, but found that it was too flexible to be processed.

A prototype Gigabot X 3D printer was used to 3D print the materials, and a self-designed “recyclebot” was used to create PLA filament from the pellets.

“The system could control the particle size by changing the speed,” the researchers state. “…The pellet production rate in kg/h is a function of speed of the motor and is linear: 0.5 kg/h at full speed with one motor, 0.25 at 100 rpm, and 0.125 at 50 rpm.”

Recycled material, such as PET and PP, can also be used from post-consumer materials, chopping up things like water bottles.

“To maintain acceptable mechanical properties, the recycled filament must be blended with virgin materials or reinforced with more robust materials,” the researchers explain. “Despite these drawbacks, a life cycle analysis of materials processed with a recyclebot found a 90% decrease in the embodied energy of the filament compared to traditional filament manufacturing.”

Thermopolymers that have been shown to be acceptable for the recyclebot process include PLA, HDPE, ABS and elastomers, as well as composites such as waste wood biopolymers and carbon fiber-reinforced plastics.

Future work includes replacing some parts such as the DC motor with cheaper alternatives, as well as working on geometric improvements that would allow flexible filaments such as NinjaFlex to be chopped.

“The system was successfully developed using open-source design strategies and fabricated using low-cost open-source 3-D printers,” the researchers conclude. “The invention provided high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer as well as for recyclebot reformulation of 3-D printing filament. It has a 0.5 kg/h throughput with one motor,and a 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully 3-D printed directly via FGF, as well as indirectly after being converted into high-tolerance filament in a recyclebot.”

Authors of the paper include Aubrey L Woern and Joshua Pearce.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

3DPOD Episode 93: Bound Metal 3D Printing with Mantle CEO Ted Sorom

Eco-Friendly 3D Printing: Sustainable Luxury Handbags Enabled with AM



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: January 16, 2022

We’re back in business this week with plenty of webinars and events, both virtual and in-person, starting with the second edition of the all-female-speaker TIPE 3D Printing conference. There are...

3D Printing News Briefs, January 12, 2022: Rebranding, Bioprinting, & More

First up in today’s 3D Printing News Briefs, Particle3D has gone through a rebrand, and a team of researchers developed a way to 3D print and preserve tissues in below-freezing...

3D Printing News Briefs, January 5, 2022: Software, Research, & More

We’re kicking off today’s 3D Printing News Briefs with 3D software, as Materialise has integrated Siemens’ Parasolid with its own Magics software. Moving on, The Virtual Foundry launched a metal...

3D Printing News Briefs, January 1st, 2022: CES 2022, Standards, Business, & More

Happy New Year! We’re starting with this week’s CES 2022 in today’s 3D Printing News Briefs, then moving on to a new AM standard and business news from Roboze and...


Shop

View our broad assortment of in house and third party products.