EPlus3D

Researchers Evaluate 3D Printability of Different Types of Concrete

Metal AM Markets

Share this Article

To 3D print concrete, several parameters must be met. It must be able to be extruded through a nozzle, hold its shape once deposited, and also be able to hold up under the weight of successive layers. In a paper entitled “Evaluation of workability parameters in 3D printing concrete,” a team of researchers measured the workability of fresh concrete for 3D printing according to four different tests: “flow table, ICAR rheometer, Vicat and an experimental applied in the laboratory by measuring the electric power consumption of the motor that rotates the screw extruder.”

For their materials, the researchers used crushed limestone, siliceous river sand and a combination of half and half of each. They developed a prototype 3D printing system to test the materials.

“Concrete mixtures produced with different aggregates, binders and different amount of water and superplasticizer were produced, tested for workability according to four different tests and printed in order to have available a wide data range of measured workability parameters and finally define their threshold values that characterize a concrete mixture as printable,” the researchers state.

The researchers established four criteria of printability and buildability:

  1. The mixture can be extruded through the nozzle
  2. Good print quality meaning no voids, no dimensional variations of extruded material
  3. Five layers of printing material can be achieved without collapse
  4. Height of 1st layer versus height of 5th layer ~ 1

It was difficult to find a mixture that met all four criteria. A mixture with limestone as aggregate and cement as binder was adjusted to achieve three different workability levels, high, moderate and low, but none of them were considered printable because none met all four of the established criteria.

The researchers also evaluated the loss of workability with time. Expansion of mixtures with the three different aggregates (limestone, river sand and the mixture of both) was measured 0, 15 and 30 minutes after mixing.

“Concrete with limestone filler lost workability in a higher rate than ones with river sand or combination with limestone and river sand,” the researchers state. “This can be explained by the granulometry of aggregates. Limestone filler has more fines that absorb more water from the mixture.”

Many of the river sand and combination aggregates could be 3D printed successfully, while most of the limestone-based mixtures were proven to be not printable. The limestone mixtures also required higher amounts of water and super-plasticizer to achieve the same level of workability as the other mixtures, which led to lower values of compressive strength.

“The use of alternative cementitious materials such as fly ash and ladle furnace slag as a replacement of cement
(20wt.%) results to average reduction of compressive strength by 30% and density by 10%, compared to mixtures with 100% cement as binder,” the researchers conclude. “It should also be mentioned that in most cases during printing, it was observed that fly ash mixtures showed reduced values and higher loss rate of workability with time compared to other mixtures. However, lower cost and volume stability of hardened concrete are expected to be the advantages of using fly ash or ladle furnace slag in concrete for 3D printing.”

Authors of the paper include M. Papachristoforou, V. Mitsopoulos, and M. Stefanidou.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Share this Article


Recent News

Human Remains Could Be Identified with the Help of Forensic 3D Printing

US Air Force and Japan Building Leader Back Branch Technology’s Construction 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Chinese 3D Printed Medicine Company Triastek Lands $20.4M in Pre-C Round

Triastek, the leader in additive manufacturing (AM) for pharmaceuticals based in Nanjing, China, has completed a Pre-C financing round worth $20.4 million dollars. Led by Guoxin International Investment, a Chinese...

3D Printing News Unpeeled: 16 & 20 lasers & Mighty Buildings Gets $52m

Farsoon Technologies and Bright Laser Technologies (BLT) both unveiled large powder bed fusion machines. Farsoon´s FS1521M has 16 fiber lasers and a 1.5 meters by 850mm Z-axis build volume. BLT´s BLT-S800...

$52M in Funding Will Push Mighty Buildings’ 3D Printed Houses into Middle East

Oakland’s Mighty Buildings, a maker of sustainable prefabricated homes produced with additive construction (AC), has received $52 million in its latest funding round. Two firms co-led the series, including Wa’ed...

US Air Force Awards $1.13M for 3D Printed Construction Retrofitting

Branch Technology, the Chattanooga-based additive construction (AC) firm, has been awarded a $1.13 million contract from the US Air Force for its proprietary Cellular Fabrication (C-Fab) technology. The Air Force...