Duke University’s 3D Printing Innovation Lab Allows Surgeons to Create Accurate 3D Printed Medical Training Models

Share this Article

3D printers in Duke University’s Innovation Co-Lab [Image: Innovation Co-Lab Studio]

3D printing is becoming increasingly more accessible and affordable in many industries, including the medical field. We often see the technology used for the purposes of creating accurate training models and simulators, so that medical professionals can practice surgeries and procedures ahead of time – this not only saves on costs, but can also allow surgeons to offer a better level of care.

Tawfig Khoury, MD, an otolaryngology (ear and throat) resident at Duke University, is focused on the latter, and uses 3D printing to improve patient care. He makes 3D printed medical models of the ear’s delicate temporal bones, which are later used for the purposes of medical training.

“One focus of my research has been taking CT scans of temporal bones, and printing an exact, patient-specific replica. Our residents can then practice drilling and performing other tests without having to work on an actual patient,” Dr. Khoury explained.

Tawfiq Khoury, MD, Otolaryngology
Resident

Dr. Khoury works on his 3D printed models at the university’s Innovation Co-Lab Studio, which contains a network of over 80 3D printers, ranging from MakerBot and Markforged to Ultimaker and Formlabs, that have been used for various projects since the facility began to really grow last year and explore new uses for 3D printing at the university.

“With recent renovations, we now have a state-of-the-art facility, with high-end equipment across an entire floor dedicated to the lab,” Dr. Khoury said.

“The Innovation Lab is a great example of how different departments across the hospital, as well as other healthcare groups, residents, and students, can work together to create something of value for the community.”

The lab, previously described as a “creativity incubator,” also includes 3D scanning equipment, CNC machines and laser cutters, digital modeling workstations, and a multitude of electronics.

Physicians from several of the university’s medical specialties, including cardiology, neurosurgery, and neurology, use the patient record system Epic to access an ordering system in order to have medical models 3D printed in the studio from ultrasounds and CT and MRI scans. Occasionally, the Innovation Co-Lab Studio can provide its 3D printing services at no cost if the 3D printed replica models are created specifically for patient care.

One of the 80 3D printers in Duke University’s Innovation Co-Lab Studio [Image: Cara O’Malley]

In order to receive and handle requests for 3D prints from around the world, the studio uses 3DPrinterOS, the popular online cloud management system, as a service to the university’s community. 3DPrinterOS users have access to an online, live-streaming video of the project while it’s being 3D printed.

Since the facility’s expansion, a wider community of users have been taking advantage of its services. The expansion also gives Dr. Khoury the opportunity to, according to a post by Scott Behm with Duke’s Department of Surgery, “set his sights on some short- and long-term goals.”

Dr. Khoury feels that 3D printing, even though it can already create accurate models for the purposes of medical training, can go even further at the university. Before his residency at Duke is complete, he hopes to set up an efficient system in order to assist patients with facial trauma who must have maxillofacial reconstruction surgery. His main goal in this is to enable the routine creation of 3D printed models for eventual use in implants for this type of procedure.

Someday in the future, Dr. Khoury believes that we will be able to rely on 3D printers as a way to create organic replacement organs or body parts out of bioink or hydrogel, such as an eardrum, which can then be infused with live cells and implanted in a patient’s body.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Share this Article


Recent News

First Lithium Solid State Battery Produced by 3D Printing Startup Sakuu

RAPID + TCT Celebrate 30th Year with More 3D Printing Presentations, Speakers, & Exhibitors



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: July 25th, 2021

From compact SLS 3D printing and SOLIDWORKS certifications to full-color 3D printing, 3D printing for cosmetic dentistry, photopolymers, and more, we’ve got a lot of topics covered in this week’s...

Sponsored

Trump the Mundane Performance in Smart Printing — Creality CR-10 Smart Vanquishes with Advanced Functions

In an era that 3D printing functions seems to sit in a stereotyped mundane track, how to renovate turns to be of much importance that often draws the attention of...

Sponsored

3D Printing vs. CNC Machining

What’s the Best Way to Make Your Part? CNC machining is a common subtractive manufacturing technology. Unlike 3D printing, the process typically begins with a solid block of material (blank)...

3D Printing News Briefs, July 17, 2021: SME, Z3DLAB & CNRS, GKN Additive, FibreTuff & RSNA, Nano Dimension & Hensoldt, ioTech

In today’s 3D Printing News Briefs, we’ll tell you about a rebranded case study award, and then a few stories about 3D printing materials. Finishing up, we’re sharing news about...


Shop

View our broad assortment of in house and third party products.