Duke University’s 3D Printing Innovation Lab Allows Surgeons to Create Accurate 3D Printed Medical Training Models

Share this Article

3D printers in Duke University’s Innovation Co-Lab [Image: Innovation Co-Lab Studio]

3D printing is becoming increasingly more accessible and affordable in many industries, including the medical field. We often see the technology used for the purposes of creating accurate training models and simulators, so that medical professionals can practice surgeries and procedures ahead of time – this not only saves on costs, but can also allow surgeons to offer a better level of care.

Tawfig Khoury, MD, an otolaryngology (ear and throat) resident at Duke University, is focused on the latter, and uses 3D printing to improve patient care. He makes 3D printed medical models of the ear’s delicate temporal bones, which are later used for the purposes of medical training.

“One focus of my research has been taking CT scans of temporal bones, and printing an exact, patient-specific replica. Our residents can then practice drilling and performing other tests without having to work on an actual patient,” Dr. Khoury explained.

Tawfiq Khoury, MD, Otolaryngology
Resident

Dr. Khoury works on his 3D printed models at the university’s Innovation Co-Lab Studio, which contains a network of over 80 3D printers, ranging from MakerBot and Markforged to Ultimaker and Formlabs, that have been used for various projects since the facility began to really grow last year and explore new uses for 3D printing at the university.

“With recent renovations, we now have a state-of-the-art facility, with high-end equipment across an entire floor dedicated to the lab,” Dr. Khoury said.

“The Innovation Lab is a great example of how different departments across the hospital, as well as other healthcare groups, residents, and students, can work together to create something of value for the community.”

The lab, previously described as a “creativity incubator,” also includes 3D scanning equipment, CNC machines and laser cutters, digital modeling workstations, and a multitude of electronics.

Physicians from several of the university’s medical specialties, including cardiology, neurosurgery, and neurology, use the patient record system Epic to access an ordering system in order to have medical models 3D printed in the studio from ultrasounds and CT and MRI scans. Occasionally, the Innovation Co-Lab Studio can provide its 3D printing services at no cost if the 3D printed replica models are created specifically for patient care.

One of the 80 3D printers in Duke University’s Innovation Co-Lab Studio [Image: Cara O’Malley]

In order to receive and handle requests for 3D prints from around the world, the studio uses 3DPrinterOS, the popular online cloud management system, as a service to the university’s community. 3DPrinterOS users have access to an online, live-streaming video of the project while it’s being 3D printed.

Since the facility’s expansion, a wider community of users have been taking advantage of its services. The expansion also gives Dr. Khoury the opportunity to, according to a post by Scott Behm with Duke’s Department of Surgery, “set his sights on some short- and long-term goals.”

Dr. Khoury feels that 3D printing, even though it can already create accurate models for the purposes of medical training, can go even further at the university. Before his residency at Duke is complete, he hopes to set up an efficient system in order to assist patients with facial trauma who must have maxillofacial reconstruction surgery. His main goal in this is to enable the routine creation of 3D printed models for eventual use in implants for this type of procedure.

Someday in the future, Dr. Khoury believes that we will be able to rely on 3D printers as a way to create organic replacement organs or body parts out of bioink or hydrogel, such as an eardrum, which can then be infused with live cells and implanted in a patient’s body.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Share this Article


Recent News

nScrypt 3Dx-700 System Goes Beyond 3D Printing for Digital Manufacturing

BASF and CTIBiotech Develop 3D Bioprinted Human Reconstructed Skin



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Poietis: Bioprinting With Their Innovative Laser-Assisted Technology

In 2014, French startup Poietis developed a unique technology for the bioprinting of living tissue. Unlike conventional approaches to tissue engineering or extrusion bioprinting, their promising 4D laser-assisted system allows cells...

Creating Vascular Structures Using Low Cost Desktop 3D Printers

In a thesis entitled “Engineering of vascular networks within biocompatible hydrogels using 3D printing technology,” a PhD student named Juan Liu discusses the need for new technologies in wound healing....

3d.fab’s BioAssemblyBot Wants to 3D Print Skin onto People

3D bioprinting continues to diversify as more and more companies and research organizations join the field, each bringing their own take on the technology to the table. French collaborative platform 3d.fab has...

3D Printing for Diagnosing and Treating Cancer and R&D Tax Credits

Cancer research has evolved with the help of 3D printing. Doctors can create patient-specific 3D models of cancerous body parts to prepare for upcoming surgeries. Medical engineers can create digital...


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!