Rice University Students Develop 3D Printed Training Models for Cervical Cancer Screenings

Inkbit

Share this Article

Nearly 300,000 women die of cervical cancer every year. That’s a sobering global statistic, but even more sobering is that the large majority – about 85 percent – of those deaths occur in developing countries, where adequate detection and treatment methods are not readily available. These deaths would be preventable, if only these countries had access to the kind of health care that more developed nations do.

A group of Rice University students have developed a 3D printed device to teach healthcare providers in developing nations how to screen for cervical cancer. Seniors Christine Luk, Rachel Lambert and Elizabeth Stone are all enrolled in a course called Global Health Design, and they worked together with graduate student Sonia Parra to create a low-cost, interactive training model that mimics a woman’s pelvic region. This model can be used to practice different cervical cancer screening and treatment procedures.

“More than 90 percent of cervical cancer cases are preventable. Prevention is accomplished through screening and, if necessary, treatment. This device is specifically designed so health care providers in developing countries and low-resource regions — many of whom lack gynecological training — learn to screen for and treat cervical cancer,” said Stone.

(L to R) Christine Luk, Rachel Lambert, Sonia Parra and Elizabeth Stone

The training model was developed at Rice’s Oshman Engineering Design Kitchen (OEDK) and was based on other models created by students in past years. It was created in partnership with Rice 360° Institute for Global Health and the University of Texas MD Anderson Cancer Center. The device includes several different 3D printed models designed to resemble cervixes that are normal, precancerous or cancerous. The models fit into a holder that attaches to the back of the device and can be adjusted to simulate the different positions of a cervix. They can easily be switched around to mimic different conditions a gynecologist might encounter, and can also be dabbed with hot water to mimic the appearance of precancerous lesions.

“The main reason for this is because these countries are not able to implement the standard of care,” Parra explained. “And many times it’s also due to the lack of training for providers to learn standard cervical cancer screening and prevention skills needed in order to screen and provide prevention services for the entire population.”

It can be dangerous for those without the proper training to try to perform these procedures, she added.

“This is why the device is necessary and has such potential to save lives,” she said.

The device also has model cervixes made of a ballistic gel that can be used to train healthcare professionals to perform several different procedures:

  • Colposcopy, a method of examining the cervix, vagina and vulva when results of a Pap smear are abnormal
  • Cervical biopsy
  • Cryotherapy, which uses freezing gas to destroy precancerous cells on the cervix
  • Loop electrosurgical excision procedure, or LEEP, which uses a small electrical wire loop to remove abnormal cells from the cervix

“Here in the states we have the ability to perform Pap smears and other practices, but in other countries where this model is used, such as Mozambique and El Salvador, they may not have the necessary infrastructure to do so,” said Luk. “That’s why it’s important that this model can train as many procedures as possible.”

So far, the students have used the 3D printed training device in clinics in El Salvador and the Rio Grande Valley in Texas, with each training session being modified to fit the specific needs of an area. According to Lambert, doctors attending these sessions have expressed interest in acquiring devices with which to continue training, or even making their own. The students hope to, in the future, work with a manufacturer to mass produce the devices.

3D printing is helping to create devices for training, detection and diagnosis, modeling, and treatment of cancer around the world as technology helps to democratize healthcare.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: Rice University / Images: Jeff Fitlow]

 

Share this Article


Recent News

Golf Pro Rickie Fowler Swings a Custom 3D Printed Golf Club

Multi-Metal 3D Printing Made Possible with Grid Logic’s Powder Deposition Tech



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

BEAMIT Expands Metal 3D Printing Fleet with GE Additive’s M Line

Already a customer of GE Additive, BEAMIT Group (BEAMIT), partly owned by SANDVIK, has taken on another metal 3D printer from the manufacturing giant. The latest is a Concept Laser M...

Featured

5 Ways Biden’s AM Forward Strategy Will Grow 3D Printing in the US

On May 6, 2022, President Joe Biden paid a visit to United Performance Metals in Hamilton, Ohio, where he announced the launch of a new federal 3D printing program dubbed...

Featured

6K Raises $102M in Series D Round Led by Koch Strategic Platforms

6K has just announced that it has closed the first tranche of its Series D round of financing, for $102 million. In all, the company expects to raise a total...

Sponsored

How Intelligent Automation and Networking of 3D Printing and Post-processing Increase Productivity

The market for Additive Manufacturing (AM) processes continues to grow and will even fivefold by 2030, according to SmarTech Analysis. More and more companies are taking a step towards the...